电子辐照对功率双极晶体管损耗分析

最新更新时间:2012-10-25来源: 互联网关键字:电子辐照  功率  双极晶体管 手机看文章 扫描二维码
随时随地手机看文章

功率双极晶体管由于其低廉的成本, 在开关电源中作为功率开关管得到了广泛的应用。应用电子辐照技术可以减小少子寿命, 降低功率双极晶体管的储存时间、下降时间, 提高开关速度, 且一致性、重复性好, 成品率高, 这是高反压功率开关晶体管传统制造工艺无法比拟的。为了降低功率双极晶体管的损耗, 本文采用了10 MeV 电子辐照来减小其关断延迟时间, 提高开关电源转换效率。

  通过在功率双极晶体管中加入钳位电路使得晶体管不能达到深饱和也能降低关断延时和关断损耗,本文也对电子辐照双极晶体管和钳位型双极晶体管进行了比较。

  本文实验中采用的开关电源为BCD 半导体公司研发的3765序列充电器, 采用的功率双极晶体管是BCD半导体公司提供的APT13003E, 它被广泛应用于电子镇流器、电池充电器及电源适配器等功率开关电路中。

  1 开关电源中开关晶体管的损耗

  图1所示为一个典型的反激式开关电源示意图。在示意图中, 开关晶体管Q1 的集电极连接变压器T1.当控制器驱动为高电平时, Q1 导通, 能量存储到变压器T1 中。当控制器驱动为低电平时, Q1关断, 能量通过变压器T1 释放到后端。图2所示为开关晶体管开关过程中集电极电压和电流的波形示意图。

  

反激式开关电源示意图

 

  关晶体管在工作过程中的损耗分为开关损耗和稳态损耗, 其中开关损耗包括导通损耗和关断损耗, 稳态损耗包括通态损耗和截止损耗, 其中截止损耗占总的损耗的比率很小, 可以忽略不计。我们把Vce由90% Vindc降到110% Vcesat所用的时间定义为导通延时, 即图2中的t1 - t0, 把IC 由90% Icmax下降到0所用的时间定义为关断延时, 即t3 - t2。

  在开关晶体管开通时, 集电极电压在控制器驱动电压为高时, 基极电流变大, 集电极电压由Vindc下降为0, 此时由于变压器与原边并联的寄生电容两端的电压差也从0变为Vindc, 寄生电容充电, 因此在开关晶体管集电极产生一个尖峰电流, 另一方面, 如果副边整流二极管的反向恢复电流没有降到0, 也会进一步加大这个尖峰电流。开关晶体管出现集电极电压和电流交替现象, 产生导通损耗, 直到集电极电压降到Vcesat.导通损耗可以表示为:

  

 

  在晶体管导通后, 集电极电流从0逐渐变大, 而Vcesat不为0, 因此产生通态损耗。通态损耗可以表示为:

  

 

  在开关晶体管关断时, 集电极电流不能马上降为0, 而集电极电压已经从Vcesat开始上升, 在开关晶体管上产生电压电流交替现象, 从而产生关断损耗。

  由于变压器是电感元件, 当开关突然关断时, 变压器电感元件电流不能突变, 会产生较大的反激电压, 阻碍电流变化, 通过电路加在开关管上, 产生比较大的损耗。关断损耗可以表示为:

  

 

  开关管总的损耗可以表示为:

  

 

  一般情况下, 关断损耗在开关损耗中占的比率最大, 而关断损耗跟开关晶体管的关断延迟时间有关, 减小关断延迟时间( t3 - t2 ), 加快集电极电流下降速度, 可以降低开关晶体管的总损耗。

2 电子辐照实验

  电子辐照能在硅中引入多种深能级, 这些能级将根据其在禁带中的位置, 对电子空穴俘获截面的大小以及能级密度的大小等均对非平衡载流子的复合起贡献, 从而引起少子寿命、载流子浓度的降低,因此影响了与少子寿命有关的一些参数, 如晶体管的开关时间、电流放大系数( hFE )等。

  实验中我们把未经封装的功率双极晶体管APT13003E 圆片分为四组, 其中第一组作为对照组, 不做辐照处理, 其余三组经过10M eV 的电子辐照, 辐照剂量分别为5 kGy、10 kGy、15 kGy, 辐照完成后, 经过200℃2 h的高温退火处理, 然后四组圆片经过封装后成为成品。表1是四组晶体管的FT测试结果。

  

 

  表1 四组APT13003E 的FT测试结果

  从表1中我们可以看到, 经过辐照后, 储存时间ts 随着辐照剂量的增大有很大幅度的减小, 下降时间tf 有所减小, 上升时间tr 有所增加; 电流放大系数随着辐照剂量的增加而下降; 饱和压降和击穿电压HBVceo随辐照剂量的增大而增大。

  3 系统测试结果

  将四组不同的APT13003E 开关晶体管放入同一个使用BCD半导体公司研发的AP3765充电器系统中, 该充电器的功率是3W, 输入交流电压范围是85V ~ 264 V, 输出直流电压是5 V.图3所示为85 V、115 V、230 V 和264 V 交流输入电压下, 使用电子辐照后的APT13003E 与常规的APT13003E在输出负载电流分别是0. 15 A、0. 30 A、0. 45 A、0. 60 A(即25%、50%、75%、100%负载)下的系统平均效率增加值。

  

 

  图3 电子辐照后的APT13003E与常规的APT13003E在各个交流输入电压下系统平均效率增加百分比

  从图3 中可以看到, 在较低的交流输入电压(如85 V和115 V )下, 使用辐照后的APT13003E比使用未辐照的APT13003E 系统效率都有所提高, 而在较高交流输入电压下(如230 V 和264 V ), 辐照后的APT13003E 未能使系统效率提高。在85 V 交流输入电压下, 辐照剂量为10 kGy 的APT13003E的性能最好, 开关晶体管的总损耗由0. 209W 降低到0. 121W, 降低了42% , 使得系统整体效率提高了2. 1% , 若该开关晶体管采用TO - 92封装, 这将使开关晶体管的结温降低约11 ℃ ; 在115 V交流电压下, 系统的整体效率也提高了约1. 4%, 开关晶体管的结温将降低约7℃, 这就有效地提高开关晶体管的可靠性, 降低了开关电源的损耗。

  当辐照剂量进一步增加到15 kGy后, 系统效率提高的幅度反而降低, 因此要获得最佳的系统效率,需要采用最合适的辐照剂量。

  我们对85 V 和264 V 交流输入电压, 输出电流为0. 45 A 条件下四组APT13003E的集电极电压电流波形进行了测试, 分析了开关晶体管工作的各个阶段的损耗, 结果如表2所示, tON表示导通延时, toff表示关断延时, Tw 为开关周期, P in为充电器输入功率, P los STot为开关晶体管总的损耗, P loss tot /P in为开关晶体管损耗占系统输入功率的百分比。

  

 

  表2 四组APT13003E在充电器系统中各个阶段的损耗分析

  从表2中可以看出, 在85 V 交流输入电压下,辐照之后的APT13003E 比未辐照的APT13003E 的关断延时有了大幅的减小, 因此关断损耗大幅的减小, 如辐照为10 kGy的管子的关断损耗减小为未辐照管子的1 /6; 导通延时有所增加, 但增加的幅度较小, 导通损耗有较小的增加; 饱和压降随辐照剂量的增加而增加, 因此通态损耗随辐照剂量的增加而增加。开通损耗、通态损耗的增加与关断损耗的减小是一对矛盾, 因此必须选择合适的辐照剂量, 才能使开关晶体管总的损耗最小。

  而在264 V输入电压下, 辐照后关断损耗只有较小幅度的减小, 因此总损耗基本不变, 系统效率也没有改善。如图4 和图5 分别为未经辐照的APT13003E 在85 V 和264 V输入电压下基极电流、集电极电压和电流的波形。比较图4和图5中可以看出, 在264 V 输入电压条件下导通时集电极电流的尖峰比起85 V 时要大很多, 这是因为导通时变压器寄生电容充电电压增大了2. 1倍, 但充电时间只增加了约0. 6倍, 所以充电电流就会大大增加, 这也导致了APT13003E 的导通损耗由85 V 下的0. 016W 变为264 V下的0. 183W, 此时导通损耗占了总的损耗的大部分, 而电子辐照对导通损耗并没有改善; 另一方面, 在APT13003E 关断时, 集电极电压并没有直接降到0, 而是先经过一个近100 ns的电流“ 尾巴”之后, 才又下降到0, 此时集电极电压已经比较大了, 因此这个电流“尾巴”所造成的损耗占关断损耗的比例较大。产生这个“尾巴”的原因是, 关断开关晶体管时, 由于管子的基区比较薄, 过大的基极电流引起较大的基区电位差, 使VBE 为负的情况下发射结局部正向偏置, 集电极电流迟迟降不下来。

  

 

  图4 85 V交流输入电压下APT13003E基极电流、集电极电压、集电极电流波形图

  

 

  图5 264 V 交流输入电压下APT13003E 基极电流、集电极电压、集电极电流波形图

  而经过电子辐照后的APT13003E, 其集电极电流的这个“尾巴”并没有减小, 所以造成了辐照后的APT13003E 的关断损耗并没有大幅的降低, 因此系统的效率并没有改善。我们一方面可以优化基极驱动电路, 使关断初始时基极反向电流不至于太大, 避免产生电流“尾巴”, 而关断的最后阶段突增反向基极电流, 则在高输入电压下, 系统的效率就会有所提高; 另一方面, 通过分段绕制、使用介电常数小的绝缘材料、适当增加绝缘层厚度和静电屏蔽等方法, 降低变压器的寄生电容, 降低开关晶体管的导通损耗,系统效率也将提高。

4 电子辐照管与钳位型开关管的比较

  采用钳位型开关晶体管也能降低开关晶体管的关断延时, 其原理是通过钳位电路使VBC在晶体管导通时不能增加到深饱和所需的0. 7 V, 这样注入集电结两侧的少子很少, 使超量储存电荷很少, 这样储存时间大大缩短。采用钳位型开关晶体管主要有两种, 一种是在集电结并联肖特基二极管的晶体管,由于在高温下漏电电流较大, 其ts - Vcesat的Trade??o ff关系最差, 目前应用较少。另一种是横向PNP钳位型晶体管, 其结构图如图6所示, 它在高温下漏电较小, 能得到较好的Trade-off关系,电流放大系数基本不变, 目前得到了越来越多的应用, 如吉林华微电子股份有限公司研发的产品3DD13003A 就采用了这种结构。

  

 

  图6横向PNP钳位型晶体管结构图

  表3是AP3765序列充电器中采用经过10 kGy电子辐照的APT13003E 及3DD13003A 在85 V 和230 V 输入电压下输出负载电流分别是0. 15 A、0.30 A、0. 45 A、0. 60 A 系统平均效率的结果。从表3中可以看出, 10 kGy电子辐照后的APT13003E的效率与3DD13003A 的效率基本相同。

  

 

  表3 AP3765充电器采用以下三种开关晶体管系统效率的比较

  采用电子辐照工艺方法简单, 成本很低, 辐照后将使得开关晶体管的反向击穿电压增大, 使开关晶体管的可靠性增加, 特征频率基本不变, 其缺点是电流放大系数降低, 在大功率应用时可能会无法正常导通, 因此主要应用于中小功率开关电路中。而横向PNP钳位型开关晶体管对电流放大系数基本没有影响, 由于在侧面增加了一个pn 结, 所以晶体管面积和结电容会增加, 减小了晶体管的特征频率, 但不能提高反向击穿电压, 可以应用在双极数字电路和中小功率开关电路中。

  5 结论

  在较高交流输入电压下由于变压器寄生电容充电造成导通损耗过大及关断阶段集电极电流“尾巴”的存在, 使得系统效率没有改善。由于电子辐照使得导通损耗和通态损耗增加, 因此只有采用合适的电子辐照剂量才能使系统效率得到最大的提高。采用合适的电子辐照剂量的开关晶体管与采用横向PNP钳位型晶体管的开关电源系统效率基本相同。

关键字:电子辐照  功率  双极晶体管 编辑:神话 引用地址:电子辐照对功率双极晶体管损耗分析

上一篇:模拟IC未使用的引脚如何处理
下一篇:新一代硅调谐器Si2155的专利性能超越

推荐阅读最新更新时间:2023-10-12 20:42

完成收购后,安森美打造更全面的功率分立器件等产品组合
电子网消息,安森美半导体近期完成了收购,在成为全球领先的完备功率解决方案的征程中迈出了重要一步。安森美半导体通过近期的收购,打造更全面的功率分立器件、IC和模块产品组合,支持更宽泛的电压,适用于汽车、工业、电机控制和 IoT 等行业。 安森美半导体的全新高压 MOSFET 可应用于整流、逆变和功率因数校正等场合。凭借超级结技术,安森美半导体现在可提供适用于高端交流-直流开关电源 (SMPS) 应用的最佳解决方案。除了高压 MOSFET,低压器件的不断创新对于电源系统 ORing、次级整流和高性能直流-直流转换也至关重要。这些低压 MOSFET 着重于效率值,通过降低导通和开关损耗来实现。 此 MOSFET 系列产品以及安森
[半导体设计/制造]
功率照明级LED的封装技术
从实际应用的角度来看,安装使用简单、体积相对较小的大功率LED器件在大部分的照明应用中必将取代传统的小功率LED器件。由小功率LED组成的照明灯具为了满足照明的需要,必须集中许多个LED的光能才能达到设计要求,但带来的缺点是线路异常复杂、散热不畅,为了平衡各个LED之间的电流、电压关系,必须设计复杂的供电电路。相比之下,大功率单体LED的功率远大于若干个小功率LED的功率总和,供电线路相对简单,散热结构完善,物理特性稳定。所以说,大功率LED器件的封装方法和封装材料并不能简单地套用传统的小功率LED器件的封装方法与封装材料。大的耗散功率、大的发热量以及高的出光效率,给LED封装工艺、封装设备和封装材料提出了新的更高的要求。
[电源管理]
聊聊功率模块面临的高压挑战
随着新能源汽车消费热潮到来,车规功率半导体的需求不断攀升。 车规功率模块面临的挑战之一就是高电压。在高压环境中由ECM(电化学迁移)、漏电流引起的损坏机制发生的更加频繁,而更高压也会引起新的难题,如AMP(阳极迁移现象)。 6月6日,ZESTRON 总部的Helmut Schweigart博士在受邀参加的IPC“可靠性之路”系列讲座之《高压-电动汽车电子硬件可靠性》研讨会上提出,业内在60V以内电压范围内有丰富的知识经验支持,到了400V,1200V应用,从业者正在冒险进入未知领域(如图所示)。 图 | 电子元件上的触点间距/爬电间距要求 高电压带来的主要挑战是产品在爬电间距、电气绝缘及其在潮湿条件环境等方面的风险。
[电源管理]
聊聊<font color='red'>功率</font>模块面临的高压挑战
儒卓力提供具有高功率密度的威世N-Channel MOSFET
威世的SiSS12DN 40V N-Channel MOSFET是为提高功率转换拓扑中的功率密度和效率而设计。它们采用3.3x3.3mm紧凑型PowerPAK 1212-8S封装,可提供低于2mΩ级别中的最低输出电容(Coss)。 SiSS12DN MOSFET在10V下具有1.98mΩ的低导通电阻(RDS(ON)),可以最大限度地降低传导损耗。此外,该器件具有680pF的低输出电容(Coss)和28.7nC的优化栅极电荷(Qg),减少了与开关相关的功率损耗。 与采用6x5mm封装的相似解决方案相比,TrenchFET Gen IV功率MOSFET占用的印刷电路板(PCB)空间减少了65%,从而实现了更高的功率密度。
[半导体设计/制造]
儒卓力提供具有高<font color='red'>功率</font>密度的威世N-Channel MOSFET
功率LED的散热设计与应用趋势分析
随著全球的环保意识抬头,白炽灯泡将采取逐渐减少用量的政策,以降低环境光源所造成的大量能源浪费问题,取而代之且最具替代优势的新世代光源,就属led 产品莫属。LED发展迄今已逐渐具备多项成熟优势,例如,省电、高效率、高反应速度、寿命长,与全制程均不含汞的多项环保优点,加上体积小、重量轻与可在各种表面设置等元件 特色,已成为全球灯具与元件厂积极开发的应用光源,但实际上LED在我们所输入的能源中,仅有两成能源可以转换为光能,剩下的八成能源多半形成废热散逸。   LED虽在元件有多项环保优势,但与一般白炽灯具一样,灯具本身自己发光产生的热,也会间接影响灯具自身的使用寿命,尤其是LED为点状发光光源,其所产生的热能也集中在极小的区域,若产生
[电源管理]
高<font color='red'>功率</font>LED的散热设计与应用趋势分析
功率高压线性电源设计方案
  为了满足雷达系统对改善因子的指标要求,因而对其管体高压的稳定度和纹波均有很高的要求。又为了提高行波管的效率,普遍采用收集极降压方式,所以其高压电源由两组组成,一组是管体高压稳压电源,一组是收集极高压不稳压电源。   现就某雷达发射机高压电源设计的思路和设计方法作一介绍。    主要技术要求   1)输入电压 ~220V/400Hz(±5%)。   2)输出管体高压   电压 UA=20~25kV,稳压,连续可调;   电流 Ia≥15mA,脉冲电流Iap≥1A;   电压稳定度Sv≤10-3(输入电压±5%变化);   负载稳定度Si≤2.5×10-3(负载由空载到满载);   纹波≤10-4。   3)输出收集极高压   
[电源管理]
大<font color='red'>功率</font>高压线性电源设计方案
车载用耐用型功率电感器型号拓展
支持-55℃~+150℃的宽温度范围 提高了机械强度与可靠性 符合AEC-Q200 2016年9月27日 TDK株式会社(社长:石黑 成直)拓展车载电源电路用功率电感器CLF-NI-D系列,开发出三种新的型号:CLF5030NI-D(5.0mm x 5.3mm x 2.7mm),CLF10060NI-D(10.0mm x 10.1mm x 6.0mm),以及CLF12577NI-D(12.5mm x 12.8mm x 7.7mm)。新的车载用电源电感器高效可靠,可支持-55℃~+150℃的宽温度范围,额定电感值在1.0 H至470 H。并将从2016年10月起开始量产。 本系列还符合AE
[电源管理]
车载用耐用型<font color='red'>功率</font>电感器型号拓展
全球三大逆变器齐发声明,适配210超高功率组件产品全面上市,600W+联盟协同再进一步
2021年1月底到2月初,全球三大逆变器企业接连发布声明,宣布完美适配210超高功率组件的逆变器落地上市,并将于2021年3月进入量产,保证供应匹配210超高功率组件的逆变器,且与其他型号逆变器价格保持同一水平。210组件适配的逆变器全面上市,标志着600W+光伏开放创新生态联盟更成熟、生态更完备,打通210超高功率组件产品在系统端应用的重要环节。 1月29日,华为数字技术(苏州)有限公司发布声明,将于2021年3月底量产充分匹配210组件的逆变器(型号SUN2000-196KTL-H3),顺应210组件逐渐成为主流的市场,进一步降低光伏电站LCOE。 2月3日,上能电气股份有限公司发布声明,称已上市新型的组串式逆变器(型号SP-
[新能源]
小广播
最新模拟电子文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved