差分放大器的不匹配效应及其消除

最新更新时间:2012-10-29来源: 互联网关键字:差分  放大器  不匹配效应 手机看文章 扫描二维码
随时随地手机看文章

随着微电子制造业的发展,制作高速、高集成度的CMOS电路已迫在眉睫。在短沟道CMOS电路中由于不匹配性引起的特性变化可能会限制器件尺寸的减小而影响工艺水平的发展,这样不匹配性的消除就显得更重要。

  1 差分放大器性能

  差分放大器的目的是抑制共模输出,增大差模输出。期望差模输出电压随差模输入电压的变化而成比例变化。任意信号中的共模输入部分在电路中必须受到抑制。在理想对称的差分放大器中,每边的输出值都等于另外一边的输出值。当Vi1=-Vi2时,有Vo1=-Vo2,此时放大器是理想对称的。换言之,当输入是理想的差模电压(Vic=0)时,输出也是纯粹的差模形式的电压(Voc=0),因此Adm-cm=0。类似的,当只输入共模电压(Vid=0)时,Acm-dm=0。但是,即使在理想对称的差分放大器中,也不可能做到Acm=0。何况,即使标称相同的器件也会因为制造工艺的原因,存在有限的不匹配(失配)。因此非理想差分放大器本身还存在不匹配现象。

  差分放大器性能的一个重要方面就是所能检测到的最小直流和交流差模电压。放大器的不匹配效应和温漂都在输出端产生了难以区分的直流差模电压。同样,不匹配效应和温漂会使非零的共模输入一差模输出增益非零的差模输入一共模输出增益增大。非零的Acm-dm对于放大器尤其重要,因为它将共模输入电压转换为差模输出电压,但在下一级输入时,却被当作差模电压信号。

  如图1所示,当Vin=0,且完全对称,Vout=0,但在失配存在的情况下,Vout≠0。对于差分放大器来说,不匹配效应对直流性能的影响主要在两个方面:输人失调电压和输入失调电流,这两个参量描述了差分放大器中直流性能的一些输入参考效应。如图2所示,一个匹配的放大器的直流特性和一个失调电压源串联在输入端、失调电流源并联在输入端的时理想放大器的直流特性完全一致。只有当这两个参量都存在的情况下,失调模型才是正确的。

  

差分放大器

 

  

匹配的放大器

 

  2 工艺消除失配

  将处在饱和区的MOS管的特性表述为:

公式

1/2μCoxW/L(VGS-VTH)2。对于两个标称相同的晶体管,μ,Cox,W,L以及VTH之间的失配导致了漏极电流的失配(VGS固定)或栅源电压的失配(漏极电流固定)。直观上可以认为,随着W与L的增加,他们的相对失配,△W/W与△L/L会分别减小,也就是越大的器件表现出越小的失配。一个更重要的观察结果是,随着晶体管面积(W/L)的增加,所有的失配都减小。例如,增大W会使△W/W与△L/L都减小。这是因为随着WL,的增加,随机变化经历更大的“求平均”过程,因此其幅值下降了。对于图3所示的情况,有△L2<△L1。这是因为,如果该器件被看成许多小晶体管的并联,如图3所示,若每一个宽度为W0,那么可以得出等效长度为:

 

  

公式

 

  

由于宽度的增加而使长度不匹配减小

 

  式中:△L0是宽为W0的晶体管长度变化的统计值。等式表明,对于给定的W0,随着n的增加,Leq的变化减小,如图4所示。

  

宽的MOSFET被看成窄器件的关联

 

  上述结论也可以扩展到其他器件参数。例如,假定:器件面积增加,μCox与VTH有更小的失配。如图5所示,理由是,大尺寸晶体管可以分解为宽长分别为W0和L0小单元晶体管的串并联。其中,每个单元都呈现出(μCox)j与VTHj。对于给定的W0与L0,μCox与VTH经历更大的平均过程,致使大尺寸晶体管之间的失配更小。

  

大尺寸MOSFET可看成小尺寸器件的组合

 

  3 版图方法减少失配

  针对电路设计中,特别是全差动电路中的不对称而产生的电路失调,尽管有些失配是不可避免的,但是在版图设计中,可通过器件对称设计,使晶体管方面优化,对所关心的器件及周围环境进行对称性设计,尽量减少因工艺制造原理而引起的失配。

  如图6(a)所示,如果两个MOS管按图6(b)那样沿不同方法放置,由于在光刻及圆片加工的许多步骤中沿不同轴向的特性大不一样,就会产生很大失配。因而图6(c)和(d)的方案更合理一些。这两者的选择是由一种称作“栅阴影”的细微效应决定的。

  

版图上的对称性设计

 

  如图7(b)所示,为了避免沟道效应,通常在源一漏离子注入时把注入方向(或圆片方向)倾斜7°左右,这样栅极多晶硅就会阻挡一部份离子,形成阴影区。结果,在源区或漏区就有一条窄区,它接收的注入较小,因而在注入退火之后,使源区和漏区边缘的扩散产生了细微的不对称。

  

由注入倾斜造成栅阴影区

 

图7(a)给出考虑有栅阴影存在时的结构图,在图中,如果阴影区出现在源区(或漏区),那么这两个器件不会因阴影导致不对称。在图中,即使标出了这两个管子在阴影区的源(或漏)极,这两个MOS管也不一样,这是因为M1管源区的右边是M2管,而M2管源区的右边是场氧。同样,M1和M2左边的结构也不一样。就是说在制造过程中,M1和M2周围的工艺步骤不一致。因此图8所示的结构更好。

  图8所示结构固有的不对称性可以通过在晶体管两边加两个虚拟MOS管的方法加以改进,因为这可以使M1和M2管周围的环境几乎相同,如图9所示。

  

栅阴影效应

 

  

增加虚拟管以提高对称性

 

  同时,在对称轴的两边保持相同环境也很重要。例如,在版图中,只有一个MOS管旁边有一条无关的金属线通过,这会降低对称性,增大M1和M2之间的失配。在这种情况下,也可以在另一边放置一条相同的金属线(见图10),最好的办法就是去掉引起不对称的金属线。

  

去掉引起不对称的金属线

 

  对于大的晶体管,对称性就变得更困难了。例如,在图11所示的差分对中,为使输人失调电压较小,这两个晶体管的宽度都比较大,但沿x轴方向的梯度会引起明显的失配。为了减小失配,可以采用“共中心”的布局方法。这样沿x轴和y轴方向的一阶梯度效应就会互相抵消。如图12所示,这种布局把M1和M2都分成两个宽度为原来50%的晶体管,沿对角放置且并联连接。然而,在版图上布线很困难,经常会导致如图13所示的系统不对称,或者线对地电容及线间电容的不同而引起整体不对称。对于规模大一点的电路,如运放,则引走线可能过于复杂而无法实现。

  

离子浓度梯度变化对差动对的影响

 

  

共中心版图

 

  

一维交叉耦合

 

  线性梯度效应,也可像图12所示,通过“一维”交叉耦合的办法得到抑制。这里,所有四个宽度为50%的晶体管一字排开,M1和M2可由相邻两个晶体管与相距最远的两个晶体管分别相连构成,也可由两组相间隔的晶体管分别相连构成。

  为分析该结构中的梯度效应,假设每两个相邻的半宽晶体管之间的栅氧电容变化为△Cox。将M1a和M4a并联,得到:

  

公式

 

  因此,这种类型的交叉耦合抵消了梯度效应的影响。若用图13所示的组合可得:

  

公式

 

  式(4)和式(5)显示,图13所示的方法消除误差的能力较差。

  4 结 语

  针对CMOS差动放大器晶体管的不匹配,从理论上深刻分析其不匹配原因,介绍电路设计方法和版图设计方法进行失调电压的消除,并对所提出的电路技术进行仿真验证,能够达到降低失调电压的效果。

关键字:差分  放大器  不匹配效应 编辑:神话 引用地址:差分放大器的不匹配效应及其消除

上一篇:S波段窄带带通滤波器的优化
下一篇:MOSFET栅漏电流噪声分析

推荐阅读最新更新时间:2023-10-12 20:42

可用于电流检测监控的单电源差分放大器AD8210
AD8210是一款单电源差分放大器,非常适合放大大共模电压中的微弱差分电压。它的输入共模电压范围是-2 V 至 +65 V,电源电压典型值为5 V。 AD8210采用SOIC封装,工作温度范围是−40°C至+125°C。 AD8210在整个温度范围内具有出色的交流和直流性能,使得测量环路中的误差最小。其最大失调漂移与增益漂移分别为8 µV/°C与20 ppm/°C。 采用5V电源供电时,通过V REF 1和V REF 2引脚的设置,AD8210的输出失调可以在0.05 V 至 4.9 V的范围内进行调整。将VREF1与V+连接、V REF 2与GND连接时, 输出可被设置为满量程的一半。将V REF 1和V RE
[模拟电子]
可用于电流检测监控的单电源<font color='red'>差分</font><font color='red'>放大器</font>AD8210
一种低压低功耗衬底驱动轨至轨运算放大器设计
 运算放大器是模拟集成电路中用途最广、最基本的部件,可以用来实现放大、滤波等功能,在电子系统中有着广泛的应用。随着便携式电子产品和超深亚微米集成电路技术的不断发展,低电源电压低功耗设计已成为现代CMOS运算放大器的发展趋势。降低功耗最直接有效的方法是降低电源电压 。然而电源电压的降低,使得运算放大器的共模输入范围及输出动态范围随之也降低。同时,电路电源电压的降低将受到MOSFET阈值电压的限制。针对这一问题,衬底驱动轨至轨技术应运而生,不但有效地降低了MOSFET的阈值电压,从而直接降低了电路的电源电压,并且使共模输入范围能够达到全摆幅。但是衬底驱动MOSFET的输入跨导小,输入电容较大,从而限制了电路的最高工作频率 。因此,衬底
[工业控制]
一种低压低功耗衬底驱动轨至轨运算<font color='red'>放大器</font>设计
Allegro MicroSystems, LLC推出高精度可编程霍尔效应线性传感器IC
美国马萨诸塞州伍斯特市 – Allegro MicroSystems, LLC宣布推出新型高精度可编程霍尔效应线性传感器IC产品A1342,该集成电路具有开漏输出,适用于汽车和其他应用。通过外部编程,Allegro公司A1342器件的信号路径可提供很高的灵活性,允许从输入磁信号生成准确和定制的输出。 新器件是针对最严苛的线性现场传感器IC应用而经过特别配置的稳健解决方案。这款BiCMOS、单片IC集成有霍尔传感元件和精密温度补偿电路,能够降低霍尔元件的内在灵敏度和零漂。该器件还集成有小信号高增益放大器、专有动态偏移消除电路、高级输出线性电路及先进的诊断功能,能够提供无与伦比的客户可编程选项。 A1342器件的一个关键特性是
[传感器]
Allegro MicroSystems, LLC推出高精度可编程霍尔<font color='red'>效应</font>线性传感器IC
高压差分探头差分信号的常见测量方法
  探头的种类很多,其中高压差分探头在开关电源应用中十分广泛,然而很多用户对差分探头的理解还不够深刻,本文将重点讲述差分信号的测量。   目前高压差分探头差分信号的常见测量方法有3种:   1)示波器浮地测量   目前常见的错误浮地测量方法就是示波器浮地测量方法,是通过切断标准三头AC插座地线的方法或使用一个交流隔离变压器,切断中线与地线的连接。将示波器从保护地线浮动起来,如图4,以减小地环路的影响。这种方法其实并不可行,因为在建筑物的布线中中线也许在某处已经与地线相连,是不安全的测量方法;此外,它违反了工业健康和安全规定,且获得的测量结果也差。而且示波器在地浮动时会出现一个大的寄生电容,浮动测量将受到振荡的破坏,测量的波形失
[测试测量]
高压<font color='red'>差分</font>探头<font color='red'>差分</font>信号的常见测量方法
针对ISDB-T应用的MAX2640低噪声放大器(LNA)
MAX2640 是一款低成本、低噪声放大器(LNA),专为400MHz至2500MHz频率范围的应用设计。该器件工作在+2.7至+5.5V宽电压范围,典型情况下仅消耗3.3mA电流,同时具有低噪声系数、高增益以及高输入IP3。   综合业务数字广播(ISDB)是日本针对数字广播多媒体业务提出的数字电视和广播规范,ISDB-T是地面和移动多媒体应用的核心标准。在470MHz至770MHz频段,ISDB-T将6MHz带宽分成13个相等的分段。通道分段后,可以采用不同组合的分段发送具有不同带宽要求的节目(例如,HDTV、SDTV、数字广播等),从而提高了节目播放的灵活性,移动设备仅占用13个分段中的一个。   Maxi
[模拟电子]
针对ISDB-T应用的MAX2640低噪声<font color='red'>放大器</font>(LNA)
ANADIGICS为三星Galaxy S® III手机提供功率放大器
2012年7月25日,新泽西州沃伦讯 —— ANADIGICS, Inc. (Nasdaq:ANAD) 是全球首屈一指的射频 (RF) 解决方案供应商。该公司今日宣布开始为三星电子的新型Galaxy S III智能手机批量供应双频低功耗高效率 (HELP3E™) 功率放大器 (PA)。Galaxy S III采用一块4.8英寸高清Super AMOLED™屏幕、800万像素后置摄像头、1.5 GHz双核处理器和Android™ 4.0 Ice Cream Sandwich (冰淇淋三明治) 操作系统。ANADIGICS的AWC6323功率放大器用于由Verizon Wireless独家销售的Galaxy S III智能手机,而AW
[手机便携]
基于一个晶体管构建的FM接收器
这是一个非常简单的 FM 接收器,仅基于一个晶体管构建。没有芯片或其他有源组件。输出连接到耳机,如果你想用扬声器收听收音机,你需要一个放大器电路。 L1决定收音机的频率,充当天线,是超再生的主要调节。虽然它有许多重要的工作,但它很容易构建。获取任何直径小于 1/2 英寸(13 毫米)的圆柱形物体。粗铅笔或魔术记号笔或大钻头就可以了。#20 裸实心线效果最好,但任何保持其形状的线都可以。Wind 6 并排紧紧地绕在圆筒上,然后将电线滑下。将绕组彼此分开,使整个线圈的长度不到一英寸(2.5 厘米)。找到中点并在那里为 C2 焊接一根小线。将电线的末端安装在电路板上,在线圈和电路板之间保持一定的间隙。
[嵌入式]
基于一个晶体管构建的FM接收器
单电容式及差分电容式MEMS传感器检测系统
   单电容式及差分电容式MEMS传感器检测系统   摘要:传感器技术是信息社会的四大支柱之一,传感器和计算机结合形成的智能系统大大的拓展了人类生活的空间。在传感器家族中,根据电容的物理特性制作的传感器占有重要地位。电容传感器是很好的状态传感器,可提高电容检测,尤其是微小电容检测的精度,是目前测控技术的热点。本文重点介绍一套微小电容差分高精度检测电路,该套电路可测物体的运动加速度,加速度计的分辨率可达2-18。   电容式传感器工作原理   电容式传感器分单电容式和差分电容式二种。如图1所示。      图1 单电容式和差分电容式传感器   (a) 单电容传感器   (b) 差分电
[传感器]
小广播
最新模拟电子文章
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved