低压差线性稳压器(LDO)的噪音问题解析(一)

最新更新时间:2012-12-28来源: 互联网关键字:低压  差线性  稳压器  LDO 手机看文章 扫描二维码
随时随地手机看文章
引言

  随着通信信道的复杂度和可靠性不断增加,人们对于电信系统的要求和期望也不断提高。这些通信系统高度依赖于高性能、高时钟频率和数据转换器器件,而这些器件的性能又非常依赖于系统电源轨的质量。当使用一个高噪声电源供电时,时钟或者转换器 IC 无法达到最高性能。仅仅只是少量的电源噪声,便会对性能产生极大的负面影响。本文将对一种基本 LDO 拓扑进行仔细研究,找出其主要噪声源,并给出最小化其输出噪声的一些方法。

  表明电源品质的一个关键参数是其噪声输出,它常见的参考值为 RMS 噪声测量或者频谱噪声密度。为了获得最低 RMS 噪声或者最佳频谱噪声特性,线性电压稳压器(例如:低压降电压稳压器,LDO),始终比开关式稳压器有优势。这让其成为噪声敏感型应用的选择。

  基本 LDO 拓扑

  一个简单的线性电压稳压器包含一个基本控制环路,其负反馈与内部参考比较,以提供恒定电压—与输入电压、温度或者负载电流的变化或者扰动无关。

  图 1 显示了一个 LDO 稳压器的基本结构图。红色箭头表示负反馈信号通路。输出电压 VOUT 通过反馈电阻 R1 和 R2 分压,以提供反馈电压 VFB。VFB 与误差放大器负输入端的参考电压 VREF 比较,提供栅极驱动电压 VGATE。最后,误差信号驱动输出晶体管 NFET,以对 VOUT 进行调节。

  图 1 LDO 负反馈环路

  图 1 LDO 负反馈环路

  简单噪声分析以图 2 作为开始。蓝色箭头表示由常见放大器差异代表的环路子集(电压跟随器或者功率缓冲器)。这种电压跟随器电路迫使 VOUT 跟随 VREF。VFB 为误差信号,其参考 VREF。在稳定状态下,VOUT 大于 VREF,其如方程式 1 所描述:

  

  图 2 LDO 参考电压缓冲

  图 2 LDO 参考电压缓冲

  其中,1 + R1/R2 为误差放大器必须达到稳态输出电压 (VOUT) 的增益。

  假设电压参考不理想,并在其DC输出电压(VREF)上有一个有效噪声因数VN(REF)。假设图 2 中所有电路模块均理想,VOUT 便为噪声源的函数。可以轻松地对方程式 1 进行修改,以考虑到噪声源,如方程式 2 所示:

  

  其中,VN(REF) 为输出的单独噪声影响因素,如方程式 3 所示:

  

  通过方程式 2 和 3,我们可以清楚地看到,更高的输出电压产生更高的输出噪声。反馈电阻 R1 和 R2 设置(或者调节)输出电压,从而设置输出噪声电压。因此,许多LDO器件的特点是,噪声性能与输出电压有关。例如,VN = 16 µVRMS×VOUT 说明了一种标准的输出噪声描述方式。

  主要 LDO 输出电压噪声源

  对于大多数典型的LDO器件来说,主要输出噪声源为方程式3所示经过放大的参考噪声。虽然总输出噪声因器件不同而各异,但一般都是如此。图 3 为一个完整的结构图,显示了其各个电路组件的相应等效噪声源。由于任何有电流流过的器件都是一个潜在的噪声源,图 1 和图 2 所示所有单个组件均为一个噪声源。

  图 4 由图 3 改画而来,目的是包括 OUT 节点的所有等效参考噪声源。完整的噪声方程式为:

  

  图 3 等效噪声源 LDO 拓扑

  图 3 等效噪声源 LDO 拓扑

  图 4 统一噪声源 LDO 拓扑

  图 4 统一噪声源 LDO 拓扑

  在大多数情况下,由于参考电压模块即能带隙电路由许多电阻器、晶体管和电容器组成,因此 VN(REF) 往往会大于该方程式中最后三个噪声源,其中 VN(REF) 》》 VN(R1) 或者 VN(REF) 》》 VN(R2)。因此,方程式 4 可以简化为:

  

  就高性能 LDO 器件而言,常见的方法是添加一个降噪 (NR) 引脚,以消除参考噪声。图5描述了NR引脚如何降低噪声。由于VN(REF)为主要输出噪声源,因此我们在参考电压模块(VREF)和误差放大器之间插入一个RC滤波电容器CNR,旨在减少这种噪声。RC 滤波器减少噪声的程度由一个衰减函数决定:

  

  其中

  

  图 5 参考噪声滤波器 LDO 拓扑

  图 5 参考噪声滤波器 LDO 拓扑

  图 6 RMS 噪声与输出电压的关系

  图 6 RMS 噪声与输出电压的关系

  因此,放大参考噪声被降至(1 + R1/R2) × VN(REF) × GRC,则方程式5变为:

  

  在现实世界中,所有控制信号电平均依赖于频率,包括噪声信号在内。如果误差放大器带宽有限,则高频参考噪声 (VN(REF)) 通过误差放大器滤波,其方式与使用 RC 滤波器类似。但在实际情况下,误差放大器往往具有非常宽的带宽,因此 LDO 器件拥有非常好的电源纹波抑制 (PSRR) 性能,其为高性能 LDO 的另一个关键性能参数。为了满足这种矛盾的要求,IC 厂商选择使用宽带宽误差放大器,以实现最佳低噪声 PSRR。如果低噪声也为强制要求,则这样做会带来 NR 引脚功能的使用。

关键字:低压  差线性  稳压器  LDO 编辑:神话 引用地址:低压差线性稳压器(LDO)的噪音问题解析(一)

上一篇:无处不在的绿色能源应用
下一篇:低压差线性稳压器(LDO)的噪音问题解析(二)

推荐阅读最新更新时间:2023-10-13 10:57

MIC29150双路输出的稳压器电路 (输出1.2V,5V)
MIC29152双路输出的稳压器电路 (输出1.2V,5V) 由RS104L、MIC29150-12,MIC29150-5.0等组成。
[电源管理]
MIC29150双路输出的<font color='red'>稳压器</font>电路 (输出1.2V,5V)
采用DC/DC降压稳压器优化汽车的EMI
本文编译自EDN,作者 TI 汽车电子市场经理Zachary Imm 随着汽车配备越来越多的传感器和功能,汽车中的电子含量不断增加,功率水平也不断提高。过去依赖低压差线性稳压器(LDO)的工程师现在可能需要使用降压拓扑来满足系统的高效率要求。 降压器在更高的效率下可以提供比典型LDO更大的功率,但有一个明显缺点——它的开关特性会产生电磁干扰(EMI),这对于汽车应用而言可能是一个严重的问题。幸运的是,工程师可以使用许多技巧和工具来降低EMI,包括优化电路板布局,利用IC功能以及增加电路。 DC / DC转换器会因输入纹波,附近电路的电磁耦合以及电磁辐射而产生EMI。EMI会干扰AM / FM无线电接收器和其他敏感设备,
[汽车电子]
采用DC/DC降压<font color='red'>稳压器</font>优化汽车的EMI
一种低电压低静态电流LDO的电路设计(二)
2 电路设计与实现 本文所提的低电压、低静态电流的精简结构的LDO如图2所示。LDO的输出级是一个A类共源级电路,包括PMOS功率管M1,三极管Q1、Q2,电阻R1,R2,R3,Resr和输出负载补偿电容C1.功率管M1有非常大的宽长比来驱动比较大的负载电流。因此M1的沟长选取最小的值,达到尽可能小的寄身电容和尺寸面积。为了获取好的暂态输出特性以及环路稳定,输出补偿电容取5 μF.带隙基准电路包括三极管Q1,Q2,Q3和电阻R1,R2,R3.选取Q2的射级面积为Q1和Q3的射级面积8倍,这是Q2面积和R2阻值折中结果。三极管Q3和晶体管M6构成一个共集电极的电路,为环路提供高增益。缓冲级包括晶体管M2,M3和M4.因为NMOS
[电源管理]
一种低电压低静态电流<font color='red'>LDO</font>的电路设计(二)
Maxim发布新款低输出电压线性稳压器
Maxim 推出能够提供高达 100mA 电流的低输出电压线性稳压器 MAX16999 ,适合不断电应用。该组件仅消耗 13 μ A 静态电流,可作为并行电源在休眠模式下为微处理器的核心中断部份供电。 为进一步降低功耗, MAX16999 提供了一个使能输入,可使稳压器进入仅消耗 0.3 μ A 电流的切断模式。该组件并提供 13 种 0.5V 至 3.3V 范围内的工厂预设输出电压,因而省去了外部反馈电阻。适用于要求高可靠性和低功耗的不断电的汽车和产业应用。 MAX16999 针对恶劣的工作环境而设计,具有过流和过热保护,以及具
[电源管理]
3A 线性稳压器可非常容易地并联以分散功耗和热量
30 多年以来,基本的 3 端子稳压器一直是设计师工具箱中的基本构件,而且其基本架构没有任何重大改变。运用一个固定电压基准,电阻分压器将输出电压提高到所希望的值。这类稳压器是非常容易使用的器件,因此也非常流行,但是这种简单架构有一些固有的缺点。 使用传统线性稳压器的缺点之一是,最低输出电压受到稳压器基准电压的限制。另一个缺点是,不容易通过并联器件来提高可用输出电流或分散功耗。为了在多个稳压器之间分配负载,或者必须增加大的镇流电阻器,这会导致负载调节误差,又或者用由输入检测电阻器和运算放大器环路组成的复杂电路来平衡负载,这必然破坏了本来想运用看似简单的线性稳压器实现简单性的承诺。 不过,如果去掉电压基准,用一个精确的电流源取
[电源管理]
3A <font color='red'>线性</font><font color='red'>稳压器</font>可非常容易地并联以分散功耗和热量
详解低压隔离式电源输出电压调节
TL431并联稳压器或许是隔离式 开关电源 中最常见的IC,其可提供低成本的简单方式精确调节输出电压。TL431在单个三端器件中整合一个内部参考和一个放大器。R3和R5电阻分压器以及TL431的内部参考电压可设定输出电压。在TL431内部,误差放大器输出可驱动晶体管的基极。晶体管集电器不仅可连接TL431的K(阴极)引脚,而且还可驱动一个光耦合器,其可将隔离边界的误差信号发送至主控制器。反馈环路的频率响应由位于TL431阴极与REF引脚之间的补偿组件形成。   在转换器输出电压小于5V时,该电路开始出现一些局限性。阴极的最小推荐工作电压等于参考电压,标准版TL431为2.5V。光耦合器内部光电发射器支持约1.5V的最大正向压降。如
[电源管理]
如何设计EMI兼容的汽车开关稳压器
  不需要完全了解复杂的EMI,即可轻松设计EMI兼容的汽车开关稳压器。本文以没有复杂数学运算的直觉方式,分享成功实现开关稳压器的基本因素,主要包括:斜率控制、滤波器设计、元件选用、配置、噪声扩散及屏蔽。   汽车本身不断变化,驱动汽车的电子装置也是如此。其中最显著的莫过于插电式电动汽车(PEV),它们采用300V至400V的锂离子电池和三相推进马达取代取代燃气罐和内燃机。精密的电池组电量监控、再生制动系统及复杂的传输控制可将电池使用时间优化,使得电池需要充电的频率减少。此外,现今的电动汽车或其它种类的汽车都具有许多可提升性能、安全、便利性及舒适感的电子模块。许多中档车均配备先进的全球定位系统(GPS)、集成DVD播放器及高性能音
[电源管理]
如何设计EMI兼容的汽车开关<font color='red'>稳压器</font>
凌特推出用于开关稳压器的SOT-23扩频振荡器
凌特公司日前推出为开关稳压器而优化的纤巧扩频硅振荡器LTC6908。LTC6908采用单个电阻,可编程至50kHz到10MHz的任何频率。LTC6908有两种配置,每种都具有双路输出。LTC6908-1的两个输出相位相差180度,而LTC6908-2的输出相位则相差90度。 伪随机扩频可简单有效地降低EMI。如果开关带宽是有限的,那么 LTC6908 调制速率还可以调整为 3种设置之一。凌特公司设计部负责人Doug LaPorte说:“现在为开关提供扩频非常容易。用户用一个电阻就可设置频率和选择调制速率。” LTC6908规格工作在-40摄氏度至125摄氏度的温度范围,具有与凌特公司硅振荡器系列器件同样出色的性能;在极
[新品]
热门资源推荐
热门放大器推荐
小广播
最新电源管理文章
换一换 更多 相关热搜器件

About Us 关于我们 客户服务 联系方式 器件索引 网站地图 最新更新 手机版

站点相关:

词云: 1 2 3 4 5 6 7 8 9 10

北京市海淀区中关村大街18号B座15层1530室 电话:(010)82350740 邮编:100190

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved