正确理解时钟器件的抖动性能

最新更新时间:2013-08-19来源: China Telecom Application Team 关键字:时钟 手机看文章 扫描二维码
随时随地手机看文章

摘要

在选择时钟器件时,抖动指标是最重要的关键参数之一。但不同的时钟器件,对抖动的描述不尽相同,如不带锁相环的时钟驱动器有附加抖动指标要求,而带锁相环实现零延时的时钟驱动器则有周期抖动和周期间抖动指。同时,不同厂家对相关时钟器件的抖动指标定义条件也不一样,如在时钟合成器条件下测试,还是在抖动滤除条件下测试等。

为了正确理解时钟相关器件的抖动指标规格,同时选择抖动性能适合系统应用的时钟解决方案,本文详细介绍了如何理解两种类型时钟驱动器的抖动参数,以及从锁相环输出噪声特性理解时钟器件作为合成器、抖动滤除功能时的噪声特性。

1、概述

随着半导体工艺速度和集成度的提高,以及模拟集成电路设计能力的提升,锁相环芯片的产品形态越来越丰富,大大提升了系统时钟方案设计的灵活性,同时降低了系统时钟方案总成本。目前,锁相环集成芯片已被广泛应用于无线通信、数据网络、消费电子、医疗设备和安防监控等领域,可以实现通信网定时同步、时钟产生、时钟恢复和抖动滤除、频率合成和转换、时钟分发和驱动等功能。

面对时钟器件供应商提供的种类繁多的芯片,为系统设计选择满足性能规格,同时总体方案成本又具有竞争力的时钟电路,是电路设计者面临的一个难题。由于时钟器件的关键指标是抖动规格,高性能的抖动指标往往价格也要高很多,本文从分析时钟器件的抖动规格入手,详细介绍了如何正确地理解在时钟芯片器件手册里该指标的含义。基于抖动指标,介绍了德州仪器(TI)所提供的一系列时钟器件及其抖动性能,帮助电路设计者选择最适合自己的时钟方案。

2、时钟抖动和锁相环噪声模型

对时钟器件而言,抖动和锁相环是两个最基本的概念。

2.1、抖动

如图1 所示,时钟抖动可分为三种抖动类型:时间间隔误差TIE(Time Interval Error)、周期抖动PJ(Period Jitter)和相邻周期间抖动CCJ(Cycle to Cycle Jitter)。周期抖动是多个周期内对时钟周期的变化进行统计与测量的结果,相邻周期间抖动是时钟相邻周期的周期差值进行统计与测量的结果,由于这两种抖动是单个周期或相邻周期的偏差,表征的是短期抖动行为。时间间隔误差又称为相位抖动(Phase Jitter),是指信号在电平转换时,其边沿与理想时间位置的偏移量,通常表征的是长期抖动行为。

抖动定义

1 抖动定义

从时钟抖动的来源分析,可以把抖动归纳为两大类:确定性抖动和随机性抖动。确定性抖动是由可识别的各种干扰信号造成的,如EMI 辐射、电源噪声、同步切换噪声等等,这种抖动幅度是有边界的,而且可以通过电路设计优化把干扰源消除或大幅降低,一般是不直接描述时钟器件的抖动性能。随机抖动是不能预测的噪声源,如热噪声(也称为Johnson 噪声或散粒噪声),以及半导体加工工艺的局限性等。由于随机噪声是由多种不相关噪声源叠加的, 根据统计理论可以用高斯分布来描述其特性,由此可以得到下面两种对随机抖动幅度的表征:

1.均值(RMS)抖动,即高斯分布一阶标准偏差值。一般采用在规定的滤波器带宽内的RMS 抖动,如光通信领域常用的积分带宽是(12KHz ~ 20MHz)。

2.峰峰值(Peak-to-peak)抖动,即高斯正态曲线上最小测量值到最大测量值之间的差值。根据数据系统误码率要求的不同,最小和最大值的取值是不一样的,如误码率为时,峰峰值约等于14 倍的标准偏差值,即为

2.2、相位噪声

相位噪声是对时钟信号噪声特性的频域表征方式,表征时钟信号频率的稳定度,是指偏离载波频率(f-fc)处1Hz 带宽内噪声功率与载波信号总功率的比值,符号为L(f),单位为dBc/Hz。图2 是一个时钟信号的频谱特性,如果单频信号非常稳定的话,从频谱上看其边带会随着远离主频的位置逐渐降低,在偏离载波(f-fc)处,相位噪声约等于载波频率处曲线的高度与f 处曲线的高度之差,即图中L(f-fc)

相位噪声定义

2 相位噪声定义

2.3、均值抖动和相位噪声关系

通过前面分析,噪声可以用时域的相位抖动指标和频域的相位噪声指标来表征,但两者反映了是同一个物理现象,故均值抖动可以通过频域的相位噪声曲线计算获得,根据相关文献,频域的相位噪声与均值抖动之间的关系如下式:

 

                                1

注:f1 和f2 为抖动积分上、下限频率,f0 为信号中心频率。

下面通过一个具体例子说明频域的谱密度曲线如何转换为时域的抖动值。

图3 是某个锁相环时钟器件输出的相位噪声,载波频率Vo= 156.25MHz,为计算方便,把相位噪声曲线近似为图中红色曲线段,AB 和CD 段为常数 dBc/Hz,BC 段20dBc 衰减,幂率近似为 的噪声类型。

 

3 相位噪声曲线

按照式子(1)关于相位噪声与均值抖动间的转换关系,去积分频率取值范围为12KHz ~ 20MHz,则:

AB 段(12KHz ~ 200KHz)的近似等效均值抖动

 

CD 段(2MHz ~ 20MHz)的近似等效均值抖动

BC 段(200KHz ~ 2MHz)的近似等效均值抖动

总的等效均值抖动为:

2.4、锁相环噪声模型

图4 是典型的锁相环输出噪声分布特性曲线。在锁相环环路带宽内,主要噪声成份是参考时钟噪声、分频器噪声、PFD 和电荷泵噪声等;在环路带宽外,主要噪声源来自本地振荡器VCXO/VCO。

典型锁相环输出噪声分布

4 典型锁相环输出噪声分布

根据锁相环输出的噪声分布特性,对于基于锁相环电路设计的高抖动性能时钟器件,必须正确评估各部分电路的噪声特性,合理设计锁相环环路带宽WBW,如设计电路使得环路带宽WBW 在两噪声源相位噪声交叉点对应的频率附近,保证此时环路输出的相位噪声最小,图5 在输入参考时钟REF 有较大噪声条件下,环路带宽为~10Hz 锁相环输出噪声性能,图6 在参考时钟REF 近端噪声比较干净,环路带宽设为100KHz 附近时的输出噪声,两者在对应的应用条件下都可以得到较佳的时钟抖动性能。

 

环路带宽为~10Hz 锁相环输出噪声

5 环路带宽为~10Hz 锁相环输出噪声

 

环路带宽为100KHz 锁相环输出噪声

6 环路带宽为100KHz 锁相环输出噪声

3、时钟驱动器

时钟驱动器主要功能为时钟信号分发和增强驱动能力,可分为两大类:不带锁相环的高性能时钟驱动器,和带锁相环实现零延迟等功能的时钟驱动器。

3.1、不带锁相环的时钟驱动器

对于不带锁相环的时钟驱动器,表征抖动性能通常采用的是附加抖动指标(即噪声低噪),如下图7所示,附加抖动被定义为:

 

时钟驱动器噪声分布

7 时钟驱动器噪声分布[page]

为了准确表征驱动器本身引入的抖动指标,必须要求输入均值抖动小于器件本身的附加抖动,如图8是基于CDCLVC1310 器件的一个测试例子,从图中可以看出若输入信号为100MHz 时,在1MHz 偏置频率驱动器的低噪大概为-157dBc,在(12KHz ~ 20MHz)积分带宽内对应的附加抖动指标为:

 

 附加抖动测试波形

8 附加抖动测试波形

此外,考虑在实际应用系统中,输入时钟信号抖动性能往往比不带锁相环的时钟驱动器附加抖动差,因此不同厂家采用系统级附加抖动来表征驱动器本身的附加抖动,图9 是一个例子,驱动器对输出时钟抖动贡献的系统附加抖动为Jrms, add  183.762 182.12  24.64 fs 。此时,时钟驱动器输出总抖动主要由输入信号的抖动成分决定,器件本身引入的附加抖动非常小,因此器件本身的附加抖动(或称噪声低噪)往往比系统级的附加抖动大一些,在选择高性能时钟驱动器时,要注意正确识别附加抖动和系统级附加抖动指标。

 

 系统级附加抖动测试

9 系统级附加抖动测试

3.2、零延迟时钟驱动器

零延迟时钟驱动器主要应用在集中定时并行通信系统或基于CPU 系统的并行总线通信中,如给DDR等供时钟,要求输入和输出时钟的相位同步,采用内部集成PLL 的方法实现零延迟功能,此时器件输出的抖动性能主要由器件本身决定。对于此类器件的应用场景,必须要满足并行数据通信的建立时间和保持时间规格,因此对时钟驱动器表征抖动常用的指标是相邻周期间抖动和周期抖动,下面是CDCU2A877 器件的抖动规格,其中,考虑DDR 存储器需要上、下边沿采样,故在JEDEC 标准里对DDR 器件的半周期抖动也做了约束。

表1 CDCU2A877 器件手册抖动规格

Parameters

Test Conditions

Min

Max

Unit

Cycle to cycle jitter

160MHz - 410MHz

-40

40

PS

Period Jitter

160MHz - 270MHz

-30

30

PS

270MHz - 410MHz

-20

20

PS

Half-period jitter

160MHz - 270MHz

-75

75

PS

270MHz - 410MHz

-50

50

PS

4、锁相环时钟器件

随着半导体制造工艺的迅速发展,模拟半导体行业演进到130nm或65nm 节点时,意味模拟器件的集成度可以越来越高。目前,单芯片集成锁相环时钟IC 芯片,可以实现多锁相环集成、多VCO 集成以及时钟分布电路于一体,时钟器件种类繁多,同时有些器件即可作为时钟合成器应用,也可用作抖动滤除功能实现高性能时钟输出。

4.1、时钟合成器(CSU

也称为时钟倍频器(CMU),对输入信号进行倍频以产生各种不同频率的输出,若参考时钟为本地振荡器或内部集成时,也称为时钟发生器(Clock Generator)。根据应用场景的不同,目前集成IC 内部压控振荡器通常采用采用环形振荡器和LC 振荡器。环形振荡器的调谐范围更宽、功耗更低,而且芯片面交更小等,被大量应用在对集成度要求较高的应用场景,而LC 振荡器具有品质因数Q 值高的优势,噪声性能较环形振荡器好,被广泛引用于对抖动指标有较高要求的通信、医疗等领域。

当时钟器件作为时钟合成器应用时,环路带宽通常是在100KHz~400KHz 左右,根据具体应用场景,如输入频率和输出频率不同,环路带宽和相位余量可有差异。因此,时钟合成器输出抖动主要由参考时钟噪声分布和本地振荡器的噪声分布共同决定。作为一颗在消费类终端产品应用的时钟合成器件,CDCE706 的输出相位噪声如图8 所示,均值抖动为1.8ps@10KHz~5MHz,可满足大多数消费类产品的应用需求。

 

CDCE706 时钟合成器的输出抖动性能

10 CDCE706 时钟合成器的输出抖动性能

在数据通信系统中,往往需要高抖动性能的时钟发生器,如均值抖动指标Jrms < 1ps@(12KHz ~20MHz),此时可采用高性能时钟合成器。由于集成IC 芯片内部的压控振荡器长期稳定性较差,相应的近端噪声比基于晶体的振荡器抖动性能要差,因此时钟合成器的参考输入信号可选择来自晶振或压控晶体振荡器等具有较干净近端噪声的信号源,经内部高频锁相环电路实现频率倍频和频率转换功能,如德州仪器推出的高性能集成IC 锁相环芯片CDCM6208、LMK03806 等,图11 是CDCM6208 作为时钟合成器时一个典型的输出相位噪声(输入来自25MHz 晶体XTAL),图12 是LMK03806 典型的输出相位噪声,两者都是目前抖动性能指标最优秀的频率合成器之一。

 

CDCM6208 输出相位噪声(时钟合成器模式)

11 CDCM6208 输出相位噪声(时钟合成器模式)

 

LMK03806 输出相位噪声

12 LMK03806 输出相位噪声

4.2、抖动滤除器件(Jitter Cleaner

当输入噪声较大时,无法满足系统时钟的设计规格,此时可以采用抖动滤除器件对输入时钟信号进行噪声滤除,实现时钟同步的基础上输出低抖动的时钟信号,以满足系统抖动的应用要求。根据前面对锁相环噪声特性分析,抖动滤除器为了实现对输入时钟噪声的滤除功能,必须要用较窄的环路带宽,如几十Hz 到几百Hz。

对于抖动滤除器件,多数应用场景是借助本地高性能的压控振荡器,如VCXO、OCXO 等,可以把参考时钟输入的噪声滤除干净,锁相环输出优越于参考时钟抖动性能的时钟信号,如德州仪器的CDCE72010、CDCM7005、LMK02000 系列的产品器件,图13 是CDCE72010 的一个典型相位噪声图。另外,一些集成锁相环和高性能VCO 的时钟器件,如前面提到的CDCM6208、LMK03806 等,也可以实现抖动滤除的功能,图14 是CDCM6208 作为抖动滤除功能应用时输出时钟的相位噪声特性,可以看到其均值抖动大概在1.2ps@(10KHz ~ 20MHz),该测试用例所用到CDCM6208 的环路带宽为60Hz。

 

CDCE72010+125MHz VCXO 输出相位噪声

13 CDCE72010+125MHz VCXO 输出相位噪声

 

CDCM6208 作为抖动滤除应用时相应的相位噪声性能

14 CDCM6208 作为抖动滤除应用时相应的相位噪声性能

 

4.3、超高性能抖动滤除时钟器件

为了满足无线通信领域高集成度、超低抖动、低功耗的时钟器件应用需求,德州仪器是业界第一家推出了实现<300fs 超低抖动输出的双级串行级联锁相环时钟器件,如 LMK04000 系列、LMK04800 系列和LMK04906 等,即可实现抖动滤除功能,也可实现时钟频率合成,被广泛应用于无线基站、微波通信和100GE 数据通信领域。

 

LMK04XXX 系列双级级联时钟器件方框图

15 LMK04XXX 系列双级级联时钟器件方框图

LMK04XXX 系列器件内部结构如图15 所示,包括PLL1、PLL2、集成VCO2、各个时钟路径的分频电路、输出时延调整和输出分发电路等,其中,第一级锁相环实现抖动滤除功能,实现输出时钟具有低抖动的近端噪声,而第二级锁相环利用内部集成高性能LC 振荡器实现时钟倍频功能,可以实现超低抖动的远端噪声,从而获得整个频段范围都具有极其优秀的噪声性能。图16 是LMK04906 时钟器件的一个相位噪声例子,可以实现~100fs 级别的抖动输出。

 

 LMK04906 + VCXO 输出相位噪声

16 LMK04906 + VCXO 输出相位噪声

总结

不管在高速有线通信系统、3G/4G 的无线网络,还是在工业自动化控制系统、医疗系统以及终端消费产品和计算机产品应用中,时钟器件都是硬件电路设计中不可或缺的部件,而且时钟抖动性能往往是整个系统设计的关键参数,因此正确理解和选择适合系统应用的时钟解决方案是硬件电路设计的重要组成部分。本文详细介绍了各类时钟器件的抖动性能,旨在协助电路设计者甄别各类时钟器件的抖动性能规格,同时理解在不同应用条件下的时钟器件抖动规格差异,选择适合系统应用的时钟解决方案。德州仪器作为目前业界最广泛时钟解决方案的供应商之一,时钟产品包括单端、差分、零延时等时钟驱动器,多种类型的时钟合成器、抖动滤除器件,以及超高抖动性能的时钟器件,可以满足大多数时钟解决方案的设计需求。

参考资料

1. Texas Instruments; CDCLVC1310 Datasheet(scas917b.pdf)

2. Texas Instruments; CDCU2A877 Datasheet(scas827a.pdf)

3. Texas Instruments; CDCE706 Datasheet(scas815i.pdf)

4. Texas Instruments; CDCM6208 Datasheet(scas931b.pdf)

5. Texas Instruments; CDCE72010 Datasheet(scas858c.pdf)

6. Texas Instruments; LMK02000 Datasheet(snas390d.pdf)

7. Texas Instruments; LMK03806 Datasheet(snas522h.pdf)

8. Texas Instruments; LMK04000 Datasheet(snosaz8j.pdf)

9. Texas Instruments; LMK04800 Datasheet(snas489i.pdf)

10. Texas Instruments; LMK04906 Datasheet(snas589b.pdf)

11. Roland E.Best,Phase Locked Loops: Design, Simulation, and Applications,6th ed., McGraw-Hill Inc, 2007

关键字:时钟 编辑:冯超 引用地址:正确理解时钟器件的抖动性能

上一篇:科学家用石墨烯制造出超级电容
下一篇:模拟滤波器和数字滤波器的区别

推荐阅读最新更新时间:2023-10-12 20:46

不可错过的单片机STM32的5个时钟源知识
  众所周知STM32有5个时钟源HSI、HSE、LSI、LSE、PLL,其实他只有四个,因为从上图中可以看到PLL都是由HSI或HSE提供的。   其中,高速时钟(HSE和HSI)提供给芯片主体的主时钟.低速时钟(LSE和LSI)只是提供给芯片中的RTC(实时时钟)及独立看门狗使用,图中可以看出高速时钟也可以提供给RTC。   内部时钟是在芯片内部RC振荡器产生的,起振较快,所以时钟在芯片刚上电的时候,默认使用内部高速时钟。而外部时钟信号是由外部的晶振输入的,在精度和稳定性上都有很大优势,所以上电之后我们再通过软件配置,转而采用外部时钟信号.   高速外部时钟(HSE):以外部晶振作时钟源,晶振频率可取范围为4~16MHz
[单片机]
stm32 复用时钟开启情况
首先为什么要开启时钟? 答:因为要对寄存器进行读写!而在STM32中对寄存器的读写都是要打开寄存器对应的时钟才可以的【就像人一样,有了跳动的脉搏手臂才能有能量才能进行各种动作】。 然后就什么时候AFIO时钟开启(所有时钟都是这样)就清楚了:当需要对“AFIO时钟管理的寄存器”进行读写时AFIO时钟打开!当然不对“AFIO时钟管理的寄存器”读写时也可以打开AFIO时钟,此时只是白白增加能耗、写无用代码(白白浪费程序存储器空间)而已! 接下来:跟AFIO相关的寄存器有哪些呢? 答:根据《STM32中文参考手册_V10》有:①事件控制寄存器(AFIO_EVCR)、②复用重映射和调试I/O 配置寄存器(AFIO_MAPR)、③外部中断配置
[单片机]
STM32F103的复位及时钟控制模块头文件
在处理器正常工作前,肯定要做一些初始化工作,其中最主要的一个就是初始化各种时钟。通过对STM32F103的复位及时钟控制(RCC)模块分析之后,自己写了一个RCC的头文件,这样使用起来更方便。头文件中首先定义了最基本的几个寄存器,然后再对每个寄存器中的域使用结构体做了定义,可以直接使用寄存器中的位来操作。注意设置系统时钟时要先设置好FLASH的等待周期,不然程序就可能会跑飞。 该测试工程是在以前的GPIO实验的基础上增加系统时钟初始化代码,设置系统时钟为72M。通过流水灯可以看到,比未配置系统时钟之前(8M)流水灯的速度快了很多。 从这里下载完整的测试工程: 系统时钟初始化的代码如下: //以下时钟配置为
[单片机]
一种基于PTP 协议的局域网高精度时钟同步方法
      1 引言   在分布式系统中, 常常需要一个全局时间, 用来确定系统中各种事件发生的先后、协调各种消息的传输等,以控制和监视系统的状态。这就需要将系统中各个部件的局部时间统一,进行时钟同步。随着分布式仿真系统和试验系统在网络上的广泛应用,如何在网络上提供可靠的时钟服务成为一项重要课题。并且由于系统速度上的要求,同步的精度也成为一项重要指标。   PTP(PrecisiON Time Protocol)协议是IEEE-1588中定义的一种精密时钟同步协议,PTP 协议主要针对于相对本地化、网络化的系统, 子网较好, 内部组件相对稳定的环境设计的。由于PTP 协议实现简单,占用的网络和计算资源少等优点使其广泛应用于
[网络通信]
FPGA设计小Tips:如何正确使用FPGA的时钟资源
    把握DCM、PLL、PMCD和MMCM知识是稳健可靠的时钟设计策略的基础。赛灵思在其FPGA中提供了丰富的时钟资源,大多数设计人员在他们的FPGA设计中或多或少都会用到。不过对FPGA设计新手来说,什么时候用DCM、PLL、PMCD和MMCM四大类型中的哪一种,让他们颇为困惑。赛灵思现有的FPGA中没有一款同时包含这四种资源(见表1)。 这四大类中的每一种都针对特定的应用。例如,数字时钟管理器(DCM)适用于实现延迟锁相环(DLL)、数字频率综合器、数字移相器或数字频谱扩展器。 DCM还是镜像、发送或再缓冲时钟信号的理想选择。另一种时钟资源相位匹配时钟分频器(PMCD)可用于实现相位匹配分配时钟或相位匹配延迟时钟。
[嵌入式]
一种新型的时钟日历芯片DS12C887
摘要: 简要介绍了美国DALLAS公司的新型时钟日历芯片DS12C887的功能特性和内部控制寄存器参数,给出了DS12C887与8031单片机的电路连接图,同时给出了用C51编写的初始化程序和获取内部时间的程序。 关键词: 时钟 单片机 DS12C887 1 器件特性 DS12C887实时时钟芯片功能丰富,可以用来直接代替IBM PC上的时钟日历芯片DS12887,同时,它的管脚也和MC146818B、DS12887相兼容。 由于DS12C887能够自动产生世纪、年、月、日、时、分、秒等时间信息,其内部又增加了世纪寄存器,从而利用硬件电路解决子“千年”问题; DS12C887中自带有锂电池,外部掉
[单片机]
一种新型的<font color='red'>时钟</font>日历芯片DS12C887
调整单片机时钟精度的解决方案
  本文针对用单片机制作电子钟或要求根据时钟启控的控制系统时,出现的校准了的电子时钟的时间竟然变快或是变慢了的情况而提出的一种解决方案。   单片机应用中,常常会遇到这种情况,在用单片机制作电子钟或要求根据时钟启控的控制系统时,会突然发现当初校准了的电子时钟的时间竟然变快或是变慢了。   于是,尝试用各种方法来调整它的走时精度,但是最终的效果还是不尽人意,只好每过一段时间手动调整一次。那么,是否可使时钟走时更精确些呢?现探讨如下:   一、误差原因分析   1.单片机电子时钟的计时脉冲基准,是由外部晶振的频率经过12分频后提供的,采用内部的定时,计数器来实现计时功能。所以,外接晶振频率的精确度直接影响电子钟计时的准确性。   2.
[电源管理]
调整单片机<font color='red'>时钟</font>精度的解决方案
WT588F02KD-24SS数码管时钟语音播报芯片设计方案
随着智能家电的普及应用,消费者对于常用家电设备的功能要求也越来越高。对于时钟的要求也不仅仅只满足于看时间和闹钟功能,现在的智能家居几乎都有语音播报、语音提示的功能,能够准确的播报当前的时间,和倒计时功能。 目前产品设计常用的带语音播报和数码管显示的时钟方案一般有: 方案一:MCU+74HC573锁存芯片+时钟芯片+语音播报芯片; 方案二:MCU+74HC573锁存芯片+晶振+语音播报芯片; 而我们下面将要介绍的方案只需要MCU+WT588F02KD-24SS芯片+秒跳芯片即可实现上述方案设计所需的功能需求。 WT588F02KD-24SS数码管时钟方案简介 功能概述 ◉可以支持4位数码管调节亮度(可以扩展10个) ◉可以支
[嵌入式]
WT588F02KD-24SS数码管<font color='red'>时钟</font>语音播报芯片设计方案
小广播
最新模拟电子文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved