硅光子技术全面普及:体验硅发光技术的进展(一)

最新更新时间:2013-10-08来源: 互联网关键字:硅光子  硅发光 手机看文章 扫描二维码
随时随地手机看文章

关于在硅晶圆上实现光传输的“硅光子”技术,其实用化和研发的推进速度都超过了预期。其中,日本的进展尤其显著。日本在高密度集成技术和调制器等的小型化方面世界领先,在CMOS兼容发光技术和光子结晶的开发方面的成果也震撼全球。硅光子技术的应用范围有望从目前的主要用途——电路板间的数据传输扩大到芯片间和芯片内的传输。预计这方面的应用将在2020年前后实现实用化。

  “硅光子”已经进入全面普及阶段。利用该技术,各种光传输元件的大部分都可以通过CMOS技术集成到硅芯片上注1)。

  注1)目前只有光源还需利用化合物半导体激光元件。

  硅光子技术目前的主要用途是嵌在有源光缆(Active Optical Cable,AOC)*中的光收发器IC(图1)。AOC在超级计算机、数据中心以及通信运营商的传输装置领域的应用迅速扩大,是用于板卡和设备高速连接的光缆。

  图1:光传输的应用范围将从板卡间扩大到芯片间,再到芯片内

  本图为最近和不久的将来的光传输导入领域。名为AOC(有源光缆)的服务器板卡间通信技术大部分都是利用硅光子技术的光传输。预计今后芯片间传输、CPU 内核间以及CPU内核内的全局布线等也将利用光传输。(摄影:(a)为美高森美公司(原卓联半导体),(b)为Luxtera公司,(c)为阿尔特拉)

  *AOC(Active Optical Cable)=带光收发器模块的光缆。由于耐久性和可靠性高,在2008年前后,这种光缆在高性能计算机市场上的需求开始扩大。调查公司Global Information发布的数据显示,2011年AOC的全球销量为30.5万根,销售额为7000万美元。该公司预测,2016年的销量将达到 78.6万根,销售额将扩大到1.75亿美元。

  硅光子之所以能在AOC用光收发器领域取得这样的成绩,是因为可以通过量产大幅降低成本,这与采用CMOS技术的半导体产品一样。而以前的AOC采用的是基于化合物半导体的分立元件,价格较高。

  以风险公司为中心的市场将发生变化 开拓该用途的是美国加州理工学院成立的风险企业Luxtera,以及同为风险企业的Kotura公司。2008年前后开始量产的Luxtera于 2012年2月宣布,“已售出100万个单位通道传输容量为10Gbit/秒的光IC”。Kotura也于2013年2月宣布,“光IC的销量较上年翻了一番、相当于6万通道/月”。从这些出货量数据来看,这两家公司的产品占了AOC市场的相当大一部分注2)。

  注2) Luxtera与飞思卡尔半导体和意法半导体开展合作,Kotura与甲骨文等企业在技术开发和制造方面开展合作。

  不过,该市场将迎来巨大的变化。因为思科系统和英特尔等企业相继涉足该市场。在今后将形成市场的100Gbit/秒传输容量的AOC中,预计硅光子将掌握主导权。

  思科的动作非常迅速。该公司2012年2月斥资2.71亿美元收购了风险企业Lightwire,同年10月发布了基于硅光子技术的、支持 100Gbit/秒的光收发器规格“Cisco CPAK”,2013年3月发布了安装有该规格光收发器模块的传输装置。

  英特尔也于2013年1月发布了采用硅光子技术的AOC,该产品支持脸书主导的数据中心行业标准“Open Compute Project”。

  芯片间光传输大势所趋

  预计硅光子市场今后还将日益扩大。肩负AOC“未来”的市场已经初现端倪。AOC主要用于“电路板间”的大容量数据传输,而今后,电路板上的微处理器之间以及微处理器与存储器之间等“芯片间”用途将实用化。IBM和英特尔现在正在推进开发,目标是将其用于2020年前后的超级计算机和服务器。

  图2:光传输和电传输的低耗电量化以1cm为分界

  如果传输距离在1cm以上,目前的光传输技术的耗电量小于电传输。光传输的耗电量主要是光收发器的电光转换以及光电转换消耗的。最近大幅减小了光收发器的尺寸,因此耗电量也减小了。

  光传输的应用始于长距离通信,之后其用途扩大到了短距离通信,取代了电传输。在这一点上,采用硅光子的光传输也是一样。预计将来微处理器内部的“CPU内核间”的数据传输也必须要利用硅光子技术。

  最近,硅光子技术在芯片间的应用有了眉目,这主要是因为,利用硅光子制作的光收发器的耗电量降低了。一般来说,电传输是距离越短,所需的电力越少,而光传输即使距离缩短,电力也不会降低太多。因此,二者以耗电量相同的传输距离为分界点区分使用。最近,利用硅光子的光传输和电传输在传输距离为 1cm时的耗电量基本相同,因此,在比以前短很多的距离间也有望利用光传输(图2)。

  比如,2013年3月IBM利用硅光子技术开发出了耗电量为1pJ/bit的光收发器IC。预计电传输的最低耗电量在传输距离为1cm时约为150fJ(0.15pJ)/bit(图3)1)。虽然还有好几倍的差距,但如果只限于光传输的各项功能,耗电量比IBM的试制品小2、3位数的技术也已开发出来。

  图3:在不远的将来,微处理器内核间的传输必然要采用光传输

  本图为微处理器的CPU内核间传输等的电传输技术和光传输技术的耗电量。今后的高性能微处理器光凭电传输将无法实现耗电量的要求条件。而在距离为1cm的传输中,光传输的耗电量与电传输基本相同。还出现了各部件的耗电量比电气方式大幅降低的例子。(摄影:IBM)

  在用途方面对硅光子光传输的期待也越来越高。随着以提高微处理器速度为目的的多核化和众核化的推进,必须要大幅增加内存带宽和CPU内核间的数据传输容量。但多核化会导致CPU内核间的传输距离增长。而且,传输容量必须扩大到与内核内的全局布线相当的程度。对电传输而言,条件越来越苛刻。而对于正处于发展期的硅光子光传输,今后其耗电量还需要大幅降低。

关键字:硅光子  硅发光 编辑:神话 引用地址:硅光子技术全面普及:体验硅发光技术的进展(一)

上一篇:NFC技术定义及其与RFID的区别
下一篇:硅光子技术全面普及:体验硅发光技术的进展(二)

推荐阅读最新更新时间:2023-10-12 20:49

台积电推用于光子芯片的先进封装技术
据业内人士透露,台积电已针对数据中心市场推出了其新型先进封装技术——COUPE(compact universal photonic engine,紧凑型通用光子引擎)异构集成技术。 《电子时报》援引上述人士称,为了应对网络流量的爆炸式增长,数据中心芯片必须发展硅光子(SiPH)技术,以降低功耗并提高传输速度,这也推动了相关封装技术的进步,台积电COUPE技术由此应运而生。 COUPE技术是一种光电共封装技术(CPO),将光学引擎和多种计算和控制ASIC集成在同一封装载板或中间器件上,能够使组件之间的距离更近,提高带宽和功率效率,并减少电耦合损耗。 据消息人士所说,SiPH应用市场将至少需要2-3年的时间才能起步,但台积电凭借其对
[手机便携]
光子收发器2024年产业规模将达41.4亿美元
积体光学(PIC)收发器的市场将从2018年的约40亿美元成长到2024年的约190亿美元,数量从约3000万台增加到约1.6亿台。 根据产业研究机构Yole Développement(Yole)的研究指出,对PIC的最大批量需求是数据和电信网络中的数据中心互连(或DCI),新的应用将出现,如5G无线技术、汽车或医疗传感器。 如Google、苹果、Facebook、亚马逊和微软等大型网络公司如今已成为部署硅光子技术的推动力。 PIC由许多不同的材料构建,在特制的制造平台上,包括硅(Si)、磷化铟(InP)、二氧化硅(SiO2)、铌酸锂(LiNbO3)、氮化硅(SiN)、聚合物或玻璃。 PIC旨在将半导体,特别是晶圆级制造的优
[手机便携]
光子算数推“光子+AI”芯片
通信和人工智能可谓是最炙手可热的科技辞藻,在通信与AI的结合下,未来也将会是一个万物互联的智能时代,那么当前较为火热的硅光子芯片与人工智能相结合会产生什么样的火花呢? 随着人工智能的高速发展,传统的纯电芯片构架方案逐渐显得力不从心,能耗压力更为显著。这时,光通信产业中的硅光子芯片技术迅速崛起,为AI芯片的下一步发展提供了可能。 光子人工智能芯片是指采用硅基光子集成技术,让光提供算力,为人工智能应用提供高性能的硬件支持,其主要用于处理人工智能算法。为了实现人工智能算法中的海量并行计算,以提高光子人工智能芯片的计算能力,则需要使光子人工智能芯片内部有若干条独立传输的光路。 目前,常通过增加调制器数量的方式来解决上述问题。但是,由于调制
[手机便携]
<font color='red'>光子</font>算数推“<font color='red'>硅</font><font color='red'>光子</font>+AI”芯片
Tower和瞻博网络推出全球首个采用单片集成III-V激光器的光子平台
据外媒报道,高价值模拟半导体解决方案的代工厂Tower Semiconductor和中国台湾安全、人工智能(AI)驱动网络公司瞻博网络(Juniper Networks)宣布推出全球首款带有集成III-V激光器、放大器调制器和检测器的硅光子(SiPho)平台,支持电信和数据中心的下一代光通信,以及人工智能和自动驾驶汽车激光雷达的新兴应用。 (图片来源:Tower Semiconductor) 该新平台将III-V激光器、半导体光放大器(SOA)、电吸收调制器(EAM)和光电探测器与硅光子器件共同集成在单个芯片上,构成尺寸更小、具有更多通道数且更节能的光学架构和解决方案。代工厂可用性可使产品开发人员能够为不同的市场创建高度
[汽车电子]
Tower和瞻博网络推出全球首个采用单片集成III-V激光器的<font color='red'>硅</font><font color='red'>光子</font>平台
光子技术全面普及:体验发光技术的进展(三)
通过“慢光”缩小调制器尺寸   要想进一步改善PECST的成果,进一步缩小光调制器的尺寸并实现高速动作至关重要。这方面的研究也取得了进展(图7)。例如,PECST的研究人员之一——横滨国立大学工学研究院教授马场俊彦的研发小组通过CMOS兼容技术开发出了利用光子晶体(PhC)*技术实现10Gbit/秒动作的Mach- Zehnder型光调制器。由此,将光调制器的长度大幅缩短到了90μm。   图7:光调制器取得进一步的进步   本图为日本的研究机构开发的新一代光调制器的概要。横滨国立大学的马场研究室利用光子晶体(PhC)将光速降至约1/10,由此在较短的元件长度下确保了较长的光的有效路径长度(a)。东京大学
[模拟电子]
<font color='red'>硅</font><font color='red'>光子</font>技术全面普及:体验<font color='red'>硅</font><font color='red'>发光</font>技术的进展(三)
小广播
最新模拟电子文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved