高速面阵CCD KAI-01050功率驱动电路的设计方案(一)

最新更新时间:2013-10-31来源: 互联网关键字:CCD  KAI-01050  功率驱动 手机看文章 扫描二维码
随时随地手机看文章

此CCD功率驱动电路的难点包括40 MHz高速水平转移和复位时钟驱动、三电平阶梯波形垂直转移时钟V1和高压脉冲电子快门信号驱动设计。利用高速时钟驱动器ISL55110和钳位电路实现了高速水平转移时钟的驱动;利用两个高速MOSFET驱动器组合的方案,实现了三电平阶梯波形垂直转移时钟V1的驱动;利用两个互补高速三极管轮流开关工作实现了高压脉冲电子快门信号的驱动。对部分重点电路进行了仿真验证,并通过测试验证了本方案所设计的驱动电路满足高帧频面阵CCD KAI-01050的各项驱动要求。

  0 引言

  电荷耦合器件(CCD)是一种光电转换式图像传感器,它将光信号直接转换成电信号。由于CCD 具有集成度高、低功耗、低噪声、测量精度高、寿命长等诸多优点,因此,在精密测量、非接触无损检测、文件扫描与航空遥感等领域中得到了广泛的应用。CCD 的功率驱动是CCD 应用的关键技术之一,只有驱动脉冲的相位和电压幅值满足CCD 的要求,CCD 才能正常的完成光电转换功能,输出满足应用需求的信号。时序极为严格的多路驱动信号是CCD正常工作的条件,由于CCD 是容性负载,因此设计具有一定带负载能力驱动信号成了CCD相机系统设计中的重点和难点。

  KAI-01050是KODAK公司生产的一款高速面阵行间转移CCD,其驱动电路不仅有高达40 MHz的高速水平转移信号,还有三电平阶梯的垂直转移信号和高压脉冲的电子快门信号。这些都属于本文论述的功率驱动电路设计的重点和难点。

  本文围绕CCD KAI-01050进行功率驱动电路设计,对各部分的设计进行原理分析,并对其中部分电路进行仿真验证,最后通过试验验证设计的可行性。

  1 KAI-01050 面阵CCD

  KAI-01050是KODAK公司生产的一款高速面阵行间转移CCD,1 024(V)×1 024(H)像素,像元大小为5.5 μm×5.5 μm,其模拟输出可选择单通道、双通道和四通道输出模式。其水平转移时钟最高频率为40 MHz,此时,单通道输出帧频最高可达30 f/s,双通道输出帧频最高可达60 f/s,四通道输出帧频最高可达120 f/s.

  本文的论述的相机要求相机输出帧频为120 f/s,因此要求CCD 工作在最高水平转移时钟率40 MHz.本CCD 的驱动信号电压幅值要求和等效电容值如表1所示。

  因此要求CCD 工作在最高水平转移时钟率40 MHz.本CCD 的驱动信号电压幅值要求和等效电容值如表1所示。

  由表1可知,KAI-01050的驱动信号种类比较多,主要包括行转移(垂直转移)时钟、像素读出(水平转移)时钟、复位时钟和电子快门信号。其功率驱动电路设计重点和难点如下:

  (1)垂直转移时钟V1为三电平阶梯信号;

  (2)水平转移和复位时钟为40 MHz高速信号;

  (3)电子快门信号为的峰值达29~40 V的高压脉冲信号。

2 功率驱动电路设计

  CCD驱动电路原理框图如图1所示。

   CCD驱动电路原理框图如图1所示。

  FPGA 产生垂直转移时钟、水平转移时钟、复位时钟和电子快门信号。由于FPGA产生的是3.3 V幅度的信号,需要经过功率驱动电路,转换成符合CCD要求的驱动脉冲信号,进而驱动CCD 正常工作。本文重点论述其中的功率驱动电路部分。

  2.1 电压偏置模块

  功率驱动电路所需电压如表1所示,根据电压需求设计的电压偏置电路原理框图如图2所示。

  根据电压需求设计的电压偏置电路原理框图如图2所示。

  系统采用+12 V电源供电,电压偏置电路首先使用开关电源芯片(DC/DC)进行一级电压转换。又由于DC/DC输出电压的纹波和开关噪声较大,不能直接给电路供电,所以使用LDO芯片进行二次电压变换,最终获得稳定、低噪声的电压。

  2.2 水平转移和复位驱动电路

  由以上可知,欲使CCD工作在最高帧频120 f/s,水平转移和复位时钟的频率需要工作在40 MHz.每个驱动信号功率需求如式(1)所示:

水平转移和复位时钟的频率需要工作在40 MHz.每个驱动信号功率需求如式(1)所示:

  式中:C 为CCD时钟管脚的等效电容;V 为信号的摆幅;f 为工作频率。由式(1)可知,频率越高,需要的功率越大。

  时钟信号不仅对高低电平电压有要求,上升沿和下降沿时间也必须要在指定的范围内。要得到指定的上升时间,就必须提供相应大小的驱动电流。对CCD 功率驱动电路的要求是在较大电压摆幅情况下在快速的变化沿时能够提供足够大的瞬态驱动电流。

  由于CCD 为容性负载,由下面电容模型的公式可以算出驱动器需要提供的瞬态电流。

  由下面电容模型的公式可以算出驱动器需要提供的瞬态电流。

  上面的计算中定义上升或下降沿的时间对应电平幅度的10%~90%.设边沿变化为线性的,对于水平转移时钟,电压幅度为4 V,负载电容取最大值90 pF,对于40 MHz 信号,上升或下降沿的最长时间按5 ns 计算,那么在边沿变化处会产生的电流为57.6 mA;对于复位时钟,电压幅度为5 V,负载电容取最大值16 pF,对于40 MHz复位信号,占空比取1∶4,上升或下降沿的时间按3 ns计算,那么在边沿变化处会产生的电流为21.3 mA.

  本文选用Intersil公司高速驱动器ISL55110和二极管钳位电路进行复位和水平转移时钟的驱动电路。此驱动器最高可提供3.5 A的驱动电流,在100 pF的负载电容下,电压摆幅为12 V时,上升时间仅为1.4 ns,下降时间仅为1.2 ns.完全满足水平转移和复位时钟的功率驱动要求。

  2.3 垂直转移驱动电路

  垂直转移信号分为两种:

  (1)正常的两电平阶梯波形的V2T,V2B,V3T,V3B,V4T和V4B,高电平为GND,低电平为-9 V;

  (2)三电平阶梯波形的V1T 和V1B,高电平为12 V,中间电平为GND,低电平为-9 V.

  第一种驱动比较简单,利用驱动器和钳位电路的组合就可实现,本文不在赘述。本节主要介绍第二种电路的驱动。介绍了利用驱动器组合来实现三电平阶梯波形驱动,即把三电平阶梯脉冲分为上下两个信号,分别利用两个驱动器进行驱动,利用其中一个驱动器的输出控制另一个驱动的高电平电源管脚,从而实现三电平阶梯脉冲的驱动。

  本文也选用驱动器组合的方法来实现,由表1 可知,KAI-01050 CCD的三电阶梯脉冲驱动的高低电平的差为21 V,如果选用普通的CCD 驱动器,很难产生21 V这么大压差的驱动。

  本文选用IXYS 公司生产的高速MOSFET 驱动器IXDD404,它是一款双通道超快MOSFET 驱动器,每通道最高可以输出峰值为4 A的电流,高容性负载驱动能力,低传输延时时间,在负载为1 800 pF 时,上升/下降时间小于15 ns,4.5~35 V的宽电压操作范围。这些特点满足KAI-01050 三电平阶梯脉冲驱动电路对驱动器的需求。其原理图如图3所示。

  将三电平信号V1分解为V1HM和V1ML信号,分别经过2 个IXDD404 驱动器U1 和U2 进行驱动。V1ML 经U1 驱动后的信号控制U2 的电源输入管脚,从而两个驱动器的组合产生所需的三电平阶梯波形信号。注意U2的GND 脚,接了-9 V,此处只是为U2 提供0 电平基准,并不是必须接GND.U2前端二极管钳位电路是将逻辑电平输入调整为U2的输入范围。

  三电平阶梯脉冲功率驱动原理图

关键字:CCD  KAI-01050  功率驱动 编辑:神话 引用地址:高速面阵CCD KAI-01050功率驱动电路的设计方案(一)

上一篇:基于TSC/TCR式消弧线圈的晶闸管控制电路的设计方案
下一篇:高速面阵CCD KAI-01050功率驱动电路的设计方案(二)

推荐阅读最新更新时间:2023-10-12 20:50

新型LED驱动器IC可实现大功率汽车LED前灯
 到2015年, 高亮度(HB)LED的市场规模预计将达到202 亿美元( 数据来源:Strategies Unlimited)。驱动这种增长的关键应用领域之一是汽车设计中使用的LED,包括前灯、白天行车灯、刹车灯、仪表显示板背光照明、各种车内梳妆照明等。这种令人惊叹的增长速度不仅是因为LED具备高可靠性、低功耗以及更紧凑的外形尺寸,还因为LED能够用来实现创新设计,例如可转向前灯和防眩调光等。在汽车环境中,所有这些改进都必须优化,同时还要承受相对严苛的汽车电气及物理环境的考验。不用说,这些解决方案还必须非常扁平、占板面积非常紧凑,同时能够提高总体性价比。   尽管LED用于白天行车灯、刹车灯、转向指示灯和内部照明已经多年,
[电源管理]
新型LED<font color='red'>驱动</font>器IC可实现大<font color='red'>功率</font>汽车LED前灯
平台式CCD扫描仪的原理图
平台式CCD扫描仪的原理图
[模拟电子]
平台式<font color='red'>CCD</font>扫描仪的原理图
基于80C196KB的线阵CCD高速采集系统
1引言     电荷耦合器件(CCD)具有自扫描、光电灵敏度高和几何尺寸精确等一系列优点,因此在光电非接触测量中得到了广泛应用。它能将光强分布的空间信息转换为电信号序列信息,当它对空间光强分布一次采样后、以电信号形式串行输出。为了保证信号质量,在每个像素上光信号积分时间有严格限制,一般要求串行传送速率为几千到几兆赫兹。而在工业测量系统中,广泛使用的单片机指令速度相对较慢。对于80C196KB单片机,若外部时钟为12MHz,内部二分频后为 6MHz,多数指令执行周期都超过了1us,线阵TCD1208AP信号输出典型频率为1MHz。因而会由于采集速度过快,CPU速度跟不上而出现数据的丢失或混叠,所以必须设计高速数据采集系统。    
[单片机]
功率稳定可调LD驱动电路的设计
摘要:功率稳定可调的激光二极管(LD)在精密光电检测和光纤通信系统中应用广泛。介绍了一种单片机控制激光二极管输出功率的方法,针对SANYO 30mW红光LD设计了驱动电路,其驱动电流在0~100mA之间可调,最小可调量 1.3 电路模块选型及计算 1.3.1 差分放大模块 由图1(b)可见,监测电流很小,尤其当激光器输出功率 1.3.3 电压/电流转换 由于上述D/A转换器的输出无缓冲,故采用运放与场效应管组成的共源放大电路。其中运放对输出有缓冲作用。 图4电路中V1为D/A的输出电压,场效应管的漏极-源极的电流(即LD的驱动电流)为: 由上述可见,驱动电流由V1及小电阻Rs决定。在实际中取R
[网络通信]
详解大功率LED 恒流驱动的设计原理
   光伏 发电行业作为一种新兴行业,其发展具有突飞猛进的趋势。光伏照明是光伏产业中的支柱产业。由于光伏电池所发出来的电如果不经过一次变换的话是直流电,因此,LED 光源作为一种直流电光源,尤其适合光伏照明产业。但是,LED 的高效节能的优点要想保证的话,其驱动具有尤为重要的作用。本文对大功率LED 和小 功率 LED 适合的驱动进行了比较研究。并且提出一种基于PT4115 的高效率的大功率LED 恒流驱动解决方案。该种驱动电路简单、高效、成本低,适合当今太阳能产品的市场化发展。   1 LED 工作特性   LED 具有对电压敏感的特性,当LED 两端电压超过其导通电压后。可近似的认为其正向电压VF和正向电流IF
[电源管理]
详解大<font color='red'>功率</font>LED 恒流<font color='red'>驱动</font>的设计原理
面向CCD偏置电源应用的开关稳压器及其应用电路
   电荷耦合器件 (CCD)成像器在分辨率、读出速率和连续视频捕捉能力方面得到很大的性能提升。所有这些性能提升都意味着成像器要消耗更高的电源功率,但是电源设计必须在不降低效率或增加尺寸的情况下提高电源功率。LT3487单芯片开关稳压器为CCD应用提供了一个纤巧、高集成度、高效率的偏置电源解决方案。   LT3487在3×3mm的DFN封装内集成了升压和负输出转换稳压器、 肖特基二极管 、升压侧输出断开电阻和接地侧反馈电阻。对于为最新一代以及下一代CCD成像器供电的应用而言,LT3487的升压侧直流电流限制值(750mA)和负输出转换开关电流限制值(900mA)可谓绰绰有余。输出断开功能可避免在器件关闭期间出现由到负载
[电源管理]
面向<font color='red'>CCD</font>偏置电源应用的开关稳压器及其应用电路
怎样采用多种单端信号驱动功率、1Msps、±2.5V 差分输入、16 位 ADC
匹配传感器输出和 ADC 输入范围可能很难,尤其是要面对当今传感器所产生的多种输出电压摆幅时。本文为不同变化范围的差分、单端、单极性和双极性信号提供简便但高性能的 ADC 输入驱动器解决方案,本文的所有电路採用了 LTC2383-16 ADC 单独工作或与 LT6350 ADC 驱动器一起工作来实现 92dB SNR。 LTC2383-16 是一款低噪声、低功率、1Msps、16 位 ADC,具备 ±2.5V 的全差分输入范围。LT6350 是一款轨至轨输入和输出的、低噪声、低功率单端至差分转换器/ADC 驱动器,具备快速稳定时间。运用 LT6350,0V 至 2.5V、0V 至 5V 和 ±10V 的单端输入范围可以很容易转
[电源管理]
怎样采用多种单端信号<font color='red'>驱动</font>低<font color='red'>功率</font>、1Msps、±2.5V 差分输入、16 位 ADC
基于TMS320C6711的线阵CCD采集与处理系统
引言 TMS320C6711是TI公司推出的DSP芯片。其数据处理功能非常强大,时钟速度可大100M(或者150M),但是其I/O功能要求有限。因此,采用MCU(89C52)作为人机接口,构成双CPU(MCU和DSP)系统。 1 系统构成 本文所介绍的CCD采集系统是在32位浮点DSP(TMS320C6711)上实现的。如图1所示:单片机89C52负责接受键盘输入,并在液晶显示器上显示处理的结果信息;CCD在光点转换后的数据通过A/D转换器后在异步FIFO中缓存; DSP是系统的信息处理中心,它读取FIFO中的数据后经过处理,将结果传给89C52,由液晶显示器显示信息。 DSP(TMS3
[嵌入式]
小广播
最新模拟电子文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved