差分放大器测量高电压

最新更新时间:2013-11-05来源: 互联网关键字:差分  放大器  测量高电压 手机看文章 扫描二维码
随时随地手机看文章

 图1示出了测量大信号的两种方法。第一种方法包括一个双电阻分压器和一个输出缓冲;第二种方法包括一个具有很大衰减的反相器。这两种方法都会引起测量误差,因为只有一只电阻器消耗功率而发热。这种电阻的自热和相关的变化会导致很大的线性误差。这些方法的另一个问题与放大器有关。放大器和电阻器的失调电流、失调电压、共模抑制比(CMRR)、增益误差和漂移可能会显著降低总体系统性能。

  图2所示的电路可以测量超过400 V的峰峰值电压(Vp-p),其线性误差小于5 ppm。该电路将输入信号衰减到1/20然后通过缓冲输出。由于该放大器和两只衰减电阻器被封装在一起,所以衰减器中的两只电阻器串具有相同的温度。放大器电路级采用超β晶体管,因此失调电流和偏置电流误差都很小,另外,因为没有噪声增益(例如,在低频时有100%的反馈),所以失调电压及其漂移几乎不会增加误差。

  AD629不能稳定在100%的反馈,所以30 pF电容器给反馈增益增加了一个极点和一个零点,从而稳定了电路并且增大了系统带宽。极点频率为

  fp = 1/ ( 2π (380k+20k) 30pF) = 13 kHz.

  零点频率为

  fz = 1/ ( 2π (20k) 30pF) = 265 kHz.

  图3是一幅性能波形图,示出了400 V峰峰值输入电压(上图)和20 V峰峰值输出电压(下图)。

  图4也是一幅性能波形图,示出了输出信号与输入信号之间的关系,其中输入信号每刻度表示50 V,输出信号每刻度为5 V。

  图5示出了输出非线性误差与输入信号的关系曲线。

图1:如何测量高电压

  图1:如何测量高电压

图2:新的高电压测量系统

  图2:新的高电压测量系统

图3:性能波形图

  图3:性能波形图:上,输入电压(400 Vp-p),下,输入电压(20 Vp-p)

图4:高电压测量系统的输出与输入关系曲线0(Vp-p)

  图4:高电压测量系统的输出与输入关系曲线0(Vp-p)

图5:高电压测量系统的非线性误差

  图5:高电压测量系统的非线性误差:

  Y轴:输出非线性误差,每刻度10ppm。

  X轴:输入电压,每刻度50 V

关键字:差分  放大器  测量高电压 编辑:神话 引用地址:差分放大器测量高电压

上一篇:微功耗、单/双向电流检测放大器MAX9929数据手册及应用电路
下一篇:关键运算放大器基本特性与设计考量

推荐阅读最新更新时间:2023-10-12 20:51

制作40W晶体管Hi-Fi功率放大器的原理
该放大器在较高的输出下能保持高保真的素质,可以对4Ω/8Ω的负载提供2×73/44瓦的输出功率,失调电压小于土40mV,输入阻抗为100kΩ,谐波失真小于0.015%,互调失真小于0.02%,频率范围为10Hz一30kHz(土2dB),信噪比在100mW输出时大于72dB。 电路原理 这里只给出其中一个声道的原理和制作过程.图l是其电路原理,输入信号由晶体管T1的基极引入,T1和T2构成差分对,T3作为T1、T2的恒流源.T1的输出直接用于驱动T4,T4和T5构成串联管对,T4、T5的恒流源由T6、T7构成。 晶体管T8和T9用作二极管,它们的作用是对晶体管T10和T1l进行温度补偿.T10、T12、T1
[工业控制]
制作40W晶体管Hi-Fi功率<font color='red'>放大器</font>的原理
数字音频放大器改变便携音频的现状
    音频市场在不断地发生着各种变化,同时,数字市场(互联网,数字网络,无线数字通信)最近几年也发生了巨变,各种新型数字声音源相继出现(如MP3,Mini-Disk,DVD)。所有这些都为数字音频系统创造了崭新的需求。因此,利用数字信号处理的能力及可靠性实行诸如均衡、音量和音调控制以及声音效果等音频处理功能变得更加可行了。然而直到目前,仍然有必要通过AB类模拟放大器或D类模拟输入放大器的合理使用,来把这些数字信号转换成模拟信号进行放大。     小型化是另一种市场趋势。台式音响系统渐渐过时了,生产厂商正在寻求适宜放在书架上,甚至可挂在墙上的音频系统。但是这种变革也带来了一些难题:如何在保证音频质量的前提下设计系
[手机便携]
微波参量放大器,微波参量放大器是什么意思
微波参量放大器,微波参量放大器是什么意思 参量放大器是利用时变电抗参量实现低噪声放大的放大电路。例如﹐在变容二极管的两端外加一个周期交变电压时﹐其电容参量将随时间作周期变化。若把这一时变电容接入信号回路中﹐且当电容量变化和信号电压变化满足适当关系时﹐就能使信号得到放大。外加的交变电压源称为泵浦源。利用铁芯非线性电感线圈和电子束的非线性等也能构成参量放大器。 参量放大的原理在30年代就已出现﹐但直到50年代后期﹐可在微波频段工作的半导体变容二极管问世以后才得到发展。这是因为变容二极管具有很高的Q值﹐适于制作噪声电平极低的微波放大器。变容管参量放大器主要用来放大频率约为 1~50GHz之间的微弱信号。在这个频率
[模拟电子]
微波参量<font color='red'>放大器</font>,微波参量<font color='red'>放大器</font>是什么意思
润石科技-车规级高精度运算放大器 RS8557XF-Q1
技术描述: RS8557-Q1系列CMOS运算放大器使用了自稳零技术,提供极低的失调电压(最大100uV)以及近乎为零的温漂。该系列芯片具有超低噪声、低失调电压和低功耗的特性。 该系列高精度运算放大器输入阻抗高、轨对轨输入/输出架构支持更大的动态范围;并具有4.3MHZ的高单位增益带宽和2.5V/us的压摆率。 该系列运算放大器在单电源供电下工作电压范围为+2.7V~+5.5V;在双电源供电下工作电压范围为+1.35V至土2.75V。 独特优势: 适合汽车电子应用 满足AEC-Q100 Grade1标准低输入失调电压:1uv(典型值)输入失调电压温漂:0.05uv/C高单位增益带宽:4.3MHz 轨对轨输入输出 高
[汽车电子]
润石科技-车规级高精度运算<font color='red'>放大器</font> RS8557XF-Q1
单片分布微波放大器的设计
分布式放大器能提供很宽的频率范围和较高的增益。有一段时间,其设计通常采用传输线作为输入和输出匹配 电路 。Bill Packard(惠普公司的创始人之一)早在1948年就在其论文中提出了基于分布式设计的真空管放大器 电路 。随着砷化镓(GaAs)微波单片 集成电路 的发展成熟,为了提高效率、输出功率、减小噪声系数,人们提出了很多种放大器电路类型,但是分布式放大器仍然是宽带电路(如光通信电路)的主流设计。理解砷化镓微波单片 集成电路 GaAs MMIC分布式放大器的设计,对很多宽带电路的应用都会有很大的帮助。 约翰·霍普金斯大学从198?年开始就开设了MMIC设计课程,并在让学生在TriQuint公司的产线上流片。一款由Cra
[模拟电子]
用于高阻抗电路的低失真、低噪声放大器
用于高阻抗电路的低失真、低噪声放大器 电路的功能 近年来,噪声及失真特性得到改进的低噪声放大器品种繁多,已无须用分立元件制作了。此外,也有为了使噪声减到最小而降低源极电阻,同时输入端的偏流IR又比通用OP放大器还大的OP放大器(如NE5534等)。但是,有时很难在高输入阻抗电路中使用这些放大器。 本文提供的电路是在低失真、低噪声OP放大NE5534A的基础上加分立元件、并把输入偏置电路作成FET差动电路,使失真和噪声均降到很小。另外,输出电路电路为推挽式,可以使驱动更低的负载电阻。 电路工作原理 在输入级使用了双FET,以求减少偏流,实现高输入电阻,以满足信号源的要求,同时为了用密勒效应减少高
[模拟电子]
用于高阻抗电路的低失真、低噪声<font color='red'>放大器</font>
微弱GPS信号差分快速捕获算法
     当前GPS作为全球性卫星导航系统在各领域的应用受到普遍关注,尤其是在弱信号环境下的接收定位技术研究,受到紧急救援和军事作战需求的刺激已经成为研究热点,其中的高灵敏度接收技术,由于不受环境和条件的限制尤为受到重视。在高灵敏度GPS接收机中,由于信号的捕获处在基带处理的最前端,因此高效的微弱GPS信号捕获算法是提高高灵敏度GPS接收机性能的关键。通常的弱GPS信号比室外信号强度低约20~30 dB,或在载噪比小于28 dB-Hz则被视为弱信号,普通GPS接收机在这种情况下无法工作,高灵敏度GPS接收机主要通过信号处理算法来获得高的信号处理增益。针对高灵敏度接收机在弱信号的捕获过程中耗费大量时间的问题,文章分析了主要信号累积技
[嵌入式]
凌特最新RGB视频放大器使用单电源
凌特公司(Linear Technology Corporation)日前推出用于单电源应用的最快速3路视频放大器LT6557。该器件具有延至0.8V电源轨的宽输出摆幅,这使其成为唯一能在采用5V单电源工作时提供全视频摆幅的宽带RGB放大器。LT6557的500MHz -3dB带宽、2200V/us高转换速率和4ns的短建立时间提高了该放大器的AC性能,可产生更清晰的视频图像。此外,LT6557具有延至120MHz的0.1dB增益平坦度,方便了在宽视频信号范围内的使用。 凌特公司信号调理产品设计部负责人Dan Tran说:“LT6557独特的内部架构简化了在单电源应用中处理高速视频信号的任务。内部偏置功能允许用户用单个电阻
[新品]
小广播
热门活动
换一批
更多
最新模拟电子文章
更多精选电路图
换一换 更多 相关热搜器件
更多每日新闻
随便看看
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved