图1所示为一个音频Panpot电路,通过在左右立体声声道之间连续改变单声道音频信号的位置来响应电位器的设置。低成本和低失真是音频电路的重要考虑因素。双通道低失真差动放大器AD82731利用内部增益设置电阻确保两个通道匹配出色。它无需外部器件,每个通道均配置为两个高性能放大器,增益为3。在音频范围内,总谐波失真小于0.0007%。
虽然可以采用分立方式构建此电路,但将放大器和电阻集成在一个芯片上可以为电路板设计人员带来许多好处,如性能规格更佳、PCB面积更小和生产成本更低等。
图1. 音频Panpot放大器
本电路中,信号通过10 kΩ串联电阻在两个放大器之间分配。两个同相输入端之间插入一个游标接地的电位计。电位计和10 kΩ电阻的组合构成一个轻负载,很容易被大多数信号源驱动。放大器的增益配置为3。当电位计游标位于任一端时,一个输入端接地,因此不会有信号传送至对应的输出端。另一输入端的电压为VIN/2,因此其输出为1.5 × VIN。当游标位于中间位置时,两个放大器的输入均为VIN/3,因而各放大器的输出为VIN。这样,通过移动游标(以机械方式或电子方式),一个通道上的信号电平从0连续变化到1.5 × VIN,另一个通道上的信号电平则从1.5 × VIN连续变化到0。对听者而言,声源似乎是在声级之间从一个声道移动到另一个声道。因此,声像或声音的视在源可以位于左右扬声器之间的任意位置。
图2. 总谐波失真及噪声与频率的关系
图2显示整个音频范围内的总谐波失真及噪声。误差随频率提高而变大,但20 kHz时总误差仍然小于0.0007%。图3给出了该IC的连接图。
关键字:超低失真 音频 Panpot 放大器
编辑:神话 引用地址:超低失真音频Panpot放大器的设计
推荐阅读最新更新时间:2023-10-12 20:51
用电话机振铃IC制作音频理疗仪的设计
振铃专用集成电路需要极性确定的直流电压才能正常工作,而振铃电压是25Hz的交流电压,因此,必须先把交流电变成直流电,以供给可产生两种不同频率的振荡器使用。从线路送来的25Hz交流振铃电压经电容隔直,把48V直流电压同振铃电路隔开,只允许交流振铃电压通过。然后经整流、滤波后,变成比较平滑的直流电压。此直流电压加到振荡电路上,振荡器产生振荡,由功率输出级输出交替的两种不同频率的音频电压,驱动动圈式扬声器或压电式扬声器发出悦耳的声音。
一、振铃专用集成电路
振铃专用集成电路可以分成两类:一类是需要外接整流电路及稳压管(26~28V)的,这些电路的电路原理、性能指标及封装引出脚基本相同,不同的只是②脚的用法,如CSC
[医疗电子]
仪表放大器及应用
1 概述
仪表放大器是一种高增益、直流耦合放大器,它具有差分输入、单端输出、高输入阻抗和高共模抑制比等特点。差分放大器和仪表放大器所采用的基础部件
(运算放大器)基本相同,它们在性能上与标准运算放大器有很大的不同。标准运算放大器是单端器件,其传输函数主要由反馈网络决定;而差分放大器和仪表放大器在有共模信号条件下能够放大很微弱的差分信号,因而具有很高的共模抑制比(CMR)。它们通常不需要外部反馈网络。
用分离元件构建仪表放大器(IA)需要花费很多的时间和精力,而采用集成仪表放大器(IA)或差分放大器则是一种简便而又可行的替换方案。为了更好的理解仪表放大器(IA),了解共模抑制比(CMR)的重要性,这里以图1所示的惠斯通电桥变送
[应用]
LTC6246/47/48 : 最高效率的轨至轨运算放大器
凌力尔特公司 (Linear Technology Corporation) 推出运算放大器 系列 LTC6246、LTC6247 和 LTC6248,该系列器件运用一种节省功率的 SiGe 工艺,实现了 180MHz 增益带宽积和 90V/us 转换率,同时每放大器仅消耗 1mA 最大电源电流。这些单、双和 4 路运算放大器还具有轨至轨输入和输出、以及 4.2nV/ÖHz 宽带噪声。
尽管这些器件专为在轨至轨放大器中提供非常高的速度/电源效率而设计,但这并未牺牲 DC 性能。输入失调电压最大值规定在 500uV,开环增益为 45V/mV。运用偏置电流消除功能可在大部分输入共模电压范围内实现 350nA 的最大输
[模拟电子]
使用LPC1700的IEC 60601-1-8音频警报发生器
介绍
IEC(国际电工委员会)提供了第一个关于医疗设备音频和视频报警的重点标准,即IEC60601-1-8。通过将重点聚焦于资料的音频警告部分,IEC60601-1-8标准要求,必须使特定的旋律对应于特定的生理机能。这样就能保证报警的数量是有限的,而不会在不同的制造商之间随意变化。它也将报警的数量限制在8个,并使用了每一个的告诫和紧急形式。紧急(高级优先权)形式使用重复的五音符旋律。告诫(中等优先权)报警使用高级优先权形式的前三个音符,但不重复。将察觉的紧急程度设计到声音中的某些原理已经被应用到这些信号中;例如,中等优先权音调比高级优先权音调更缓慢的上升和下降时间,以及用于高级优先权报警的比较快的节拍。标准中也提供了一种
[单片机]
Atmel AT73C209 MP3混合音频方案
Atmel 公司的AT73C209用于低成本 音乐播放器的混合模式模拟电路,集成了立体声音频DAC和功率管理器件,非常适合以电池为能源的设备如walkman 格式或海量存储USB格式的MP3播放器。立体声DAC部分具有可编程特性和93 dB的动态范围,能向32欧姆提供20mW的立体声输出功率。而功率管理部分的输入电压从0.9V到1.8V,具有动态功率管理特性和非常低的静态功耗。本文介绍了AT73C209的主要性能,功能方框图,应用电路及其所用元器件列表;同时还介绍了AT73C209-EK2评估板的主要性能及其主电路图,电平转移电路图和S/PDIF 接口电路图。 Atmel Introduces Mixed Mode An
[单片机]
容性负载运算放大器的影响
问:为什么我要考虑驱动容性负载问题? 答:通常这是无法选择的。在大多数情况下,负载电容并非人为地所加电容。它常常 是人们不希望的一种客观存在,例如一段同轴电缆所表现出的电容效应。但是在有些情况下 ,要求对运算放大器的输出端的直流电压进行去耦。例如,当运放被用作基准电压的倒相或 驱动一个动态负载时。在这种情况下,你也许在运放的输出端直接连接旁路电容。不论哪种 情况,容性负载都要对运放的性能有影响。 问:容性负载如何影响运放的性能? 答:为简单起见,可将放大器看成一个振荡器。每个运放都有一个内部输出 电阻RO,当它与容性负载相接时,在运放传递函数上产生一个附加的极点。正如图1(b)波 特图幅频特性曲线表示,附加极点的幅频特性斜率比主极
[电源管理]
探究STM32G4系列控制器中运算放大器的应用
最近在开发一款产品的过程中用到了STM32G4系列的产品STM32G491,了解到该产品的一些优势,不仅其数字处理能力强大,更重要的是集成了丰富的模拟外设电路 - 多路模拟开关/比较器/运算放大器、ADC、DAC、温度传感器等,而且运算放大器的结构和增益都可以编程,非常灵活,能够满足大多数场景的应用,比如电机控制、工业设备、仪器仪表、数字电源等产品。 顺便讲一下,这颗芯片用在电赛中会非常合适 - 功能强大、产品指标较高,使用便捷。 虽然单颗器件的价格会高一些,但高集成度节省了板卡的面积,降低了BOM的整体成本,当然更重要的是其灵活性。 这颗器件的数字信号处理能力也非常强,比如带有FPU功能的Cortex M4内核能够运行到
[单片机]