如图所示为运算放大器精密调零电路。在某些应用场合,要求放大器的失调电压小,且要求当电源电压变化时失调电压不受影响。能够实现上述功能的电路示于图(a)。该电路采
用了双电流源集成芯片REF200,此芯片的内部结构和引脚排列示于图(b)。
上一篇:基于ICL7650程控微电流放大器设计
下一篇:基于网络分析仪的低噪声放大器精度测量
推荐阅读最新更新时间:2023-10-12 20:51
运算放大器的单电源供电原理
大部分运算放大器要求双 电源 (正负电源)供电,只有少部分运算放大器可以在单电源供电状态下工作,如LM358(双运放)、LM324(四运放)、CA3140(单运放)等。需要说明的是,单电源供电的运算放大器不仅可以在单电源条件下工作,也可在双电源供电状态下工作。例如,LM324可以在、+5~+12V单电源供电状态下工作,也可以在+5~±12V双电源供电状态下工作。
在一些交流信号放大 电路 中,也可以采用电源偏置电路,将静态直流输出 电压 降为电源电压的一半,采用单电源工作,但输入和输出信号都需要加交流耦合 电容 ,利用单电源供电的反相放大器如图1(a)所示,其运放输出波形如图1(b)所示。
该电路的
[电源管理]
半导体电阻率的多种测量方法应用与注意事项
半导体 电阻率 的多种 测量 方法应用与注意事项依据掺杂水平的不同,半导体材料可能有很高的电阻率。有几种因素可能会使测量这些材料电阻率的工作复杂化,其中包括与材料实现良好接触的问题。已经设计出专门的探头来测量半导体晶圆片和半导体棒的电阻率。这些探头通常使用硬金属,如钨来制作,并将其磨成一个探针。在这种情况下接触电阻非常高,所以应当使用四点同线(collinear)探针或者四线隔离探针。其中两个探针提供恒定的电流,而另外两个探针测量一部分样品上的电压降。利用被测电阻的几何尺寸因素,就可以计算出电阻率。 看起来这种测量可能是直截了当的,但还是有一些问题需要加以注意。对探针和测量引线进行良好的屏蔽是非常重要的,其理由有三点: 1
[测试测量]
集成运算放大器构成交流放大电路的分析和设计
引言
集成运算放大器(简称集成运放或运放)在 电子 电路 中应用非常广泛。运放的多数典型应用电路在各类电子技术教科书中都有详细和深入的分析,而用集成运放构成交流信号放大电路很多教科书却没有介绍,有些教科书虽有介绍,但是介绍简单,分析不全面。用集成运放构成的交流放大电路具有线路简单、免调试、故障率低等优点,如今许多电子产品中的交流放大电路普遍采用运放构成,全面分析集成运放构成的各种交流放大电路的组成和参数计算,有助于对该类电路的检修,以及合理设计和使用集成运放构成的交流放大电路。
1 运放交流放大电路的分析
1.1 使用双 电源 的运放交流放大电路
为了使运放在零输入时零输出,运放的内部电路是按使用
[电源管理]
用于Sigma-Delta调制器的低电压跨导运算放大器
在小尺寸、高性能、便携的移动通讯和消费电子产品的需求飞速增长的带动下,sigma-Delta型模数转换器得到了更广泛的研究和使用。Sigma-Delta模数转换器具有对电路匹配精度要求很低,精度高等特点,以跨导运算放大器OTA(Operational Ttansconoluctance Amp-lifier)为核心的调制器是Sigma-Delta模数转换器电路中的模拟电路部分。其结构选择和电路参数设计都极大影响着整个模数转换器所达到的速度和精度。
这里提出了一种用于16位三阶单环CIFB型Sigma-Delta调制器的全差分折叠式共源共栅跨导运算放大器设计方案,其电路仿真结果显示,该设计性能指标达到该调制器所需要求。
[模拟电子]
集成运算放大器的单电源供电电路原理
采用单电源对集成这算放大器供电的常用方法是,把集成运算放大器两输入端电位抬高(且通常抬高至电源电压的一半,即 E+/2),抬高后的这个电位就相当于双电源供电时的“地”电位,因此在静态工作时,输出端的电位也将等于两输入端的静态电位,即E+/2。
大多数集成运算放大器电略部采用正、负对称的双电源供电,在只有一组电源的情况下,集成运算放大器也能正常工作。图1所示为两种采用单电源供电的供电电路。
图中,集成运算放大器两输入端抬高的电压由R4、R5对电源分压后产生,约等于 E+/2;C2为滤波电容;C1和C3分别为输入、输出隔直电容。为了减小输入失调电流的影响,图1(a)中R1应等于R2与R4的并联值,图1(b)中R1应等于
[电源管理]
运算放大器--单通道、双通道、四通道优缺点及结构
Bob Widlar曾提出一个重要观点,即集成电路(IC)的设计依据应该是比例和匹配,而不是电阻和晶体管的绝对值。这个原理同样适用于需要多个运算放大器的PCB(印制电路板)设计。
双通道运放真的是两运放,还是一硅片具备两功能?
人们常常认为双通道运放等同于两个单通道运放,但在电路板上,单片双通道IC与两个单通道IC之间还是存在一些细微差别,这些差别可能会给新的设计带来问题。由于两个运放在相同的单个硅片上并排放置,因此在使用双通道放大器时需要考虑电气和散热因素。
业界研究热效应已经有30多年的历史了,并且在Solomon引用的一篇前50强IEEE论文有详细的论述 。随着运放输出电压的改变,散热量也随之改
[模拟电子]
运算放大器电路固有噪声的分析与测量
噪声的重要特性之一就是其频谱密度。电压噪声频谱密度是指每平方根赫兹的有效( RMS ) 噪声电压(通常单位为nV/rt-Hz)。功率谱密度的单位为W/Hz。在上一篇文章中,我们了解到电阻的热噪声可用方程式 2.1 计算得出。该算式经过修改也可适用于频谱密度。热噪声的重要特性之一就在于频谱密度图较平坦(也就是说所有频率的能量相同)。因此,热噪声有时也称作宽带噪声。运算放大器也存在宽带噪声。宽带噪声即为频谱密度图较平坦的噪声。
方程式 2.1:频谱密度——经修改后的热噪声方程式
图 2.1:运算放大器噪声频谱密度
除了宽带噪声之外,运算放大器常还有低频噪声区,该区的频谱密度图并不平坦。这种噪声称作 1/
[测试测量]
高精度CMOS运算放大器LMC6062/6082及其应用HighAccuracyCMOSOperationalAmplifierLMC6062/6082andI
摘要:LMC6062/6082是一种高精度、高输入阻抗的CMOS型运算放大器,文中介绍了它的特点、电气特性及使用中的一些技术问题,并给出了它的三个应用实例。
关键词:CMOS运算放大器;LMC6062/6082;特点
1. LMC6062/6082的特点
LMC6062/6082是国家半导体公司生产的双CMOS运算放大器。以往的CMOS运算放大器由于输入偏置电压较高,不适合用于要求高精度的场合。然而LMC6062/6082的优良性能使它能与高精度的双极型运放相匹敌,从而大大地拓宽了CMOS运放的应用范围。
LMC6062/6082最大额定电压为16V,可在5~15V单电
[应用]