采用新的调制技术和滤波器结构减小D类放大器的EMI

最新更新时间:2013-11-14来源: 互联网关键字:调制技术  滤波器  D类放大器  EMI 手机看文章 扫描二维码
随时随地手机看文章
摘要:D类放大器通常具有比AB类放大器更高的效率,适合低功耗应用。然而,尽管D类放大器具有这一先天优势,但仍然不能弥补传统D类放大器所存在的缺点,即增加了成本,降低了音频性能,并且需要输出滤波。然而,近年来D类放大器技术的进步,降低了D类放大器成本,同时可以提供与AB类放大器相类似的音频性能。此外,一些新型的D类输出调制方案同时也降低许多应用中的EMI。 



引言

近年来D类放大器的技术迅猛发展,最常见的莫过于应用于每个通道低于50W的低功耗产品中。在这些低功耗应用中,D类放大器相比传统AB类放大器而言有效率上的先天优势,因为D类放大器的输出级通常只处于导通或关断,没有中间偏压级。然而,长久以来,这一效率上的优势并未使其获得设计人员的广泛青睐,因为D类放大器也有明显的缺点:器件成本高、较差的音频性能(与AB类放大器相比),并且需要输出滤波。

近年来,受以下两个主要因素的影响,这样的局面正逐渐扭转,使D类放大器在很多应用领域引起了人们的广泛关注。

首先,是市场需要。D类放大器的某些优点推动了手机和LCD平板显示器这两个终端设备市场的迅速发展。对于手机来说,扬声器和PTT (Push-to-Talk,一键通)模式需要D类放大器的高效率,以延长电池寿命。LCD平板显示器的发展对电子器件提出了“低温运行(cool running)”的需求,这是由于工作温度的升高将影响显示颜色对比度。而D类放大器的高效率意味着驱动电子设备时功耗更低,使LCD平板显示器工作时发热更少,图像显示效果更好。 

影响D类放大器应用的第二个因素便是自身技术的发展。根据市场需要,一些制造商改进了D类放大技术,使D类放大器具有更理想价格的同时,也具备了与AB类放大器相近的音频性能。此外,一些新型的D类放大器输出调制方案还可以降低实际应用的EMI。 

某些新型D类放大设计方案虽然是基于老式的PWM型结构,但采用了更复杂的调制技术,实现低功耗系统中的无滤波工作。效率指标可以通过测试验证,但某些设计人员仍然怀疑基于这些新技术的产品将存在普遍的EMC/RFI兼容性问题。实际上,良好的PCB布局和较短的扬声器连线可以保证大大降低EMI幅射,使之满足FCC或CE标准。

应用难点

有些应用中的物理布局需要长的扬声器连线,这样的扬声器连线便具有天线效应,必须严格控制RF幅射。实际上,扬声器连线越长,它作为天线产生幅射的频率就越低。同时,某些应用要求EMI幅射低于CE/FCC标准,以符合汽车电子规范,或者避免干扰其他低频电路。面对如此纷繁各异的需求,这些应用往往成为一些难点无法克服。 

最有代表性的应用难点便是平板电视。由于扬声器通常排列在设备的外侧边缘,往往不可避免的要使用长的扬声器连线。如果还存在模拟视频信号,则仅仅满足FCC或CE的RF幅射要求还不够(这些标准只针对30MHz以上的频率);往往还需要抑制开关基频以避免干扰视频信号。如果采用早期PWM放大器所用的传统LC滤波器,则需要对其进行分析,以保证他们能有效抑制新型放大器所产生的高频开关瞬态。

PWM型D类放大器

传统D类放大器通常基于脉宽调制(PWM)原理设计。其输出可以配置为单端或全差分桥接负载(BTL)。图1为PWM型D类放大器的典型BTL输出波形。快速的切换时间和接近轨至轨的摆幅使此类放大器具有非常高的效率。然而,这些特性使放大器具有宽的输出频谱,可能导致高频RF幅射和干扰。因此,采用此类方案通常需要使用输出滤波器来抑制有害的RF幅射。 

图1. 传统脉宽调制(PWM)方案的波形
图1. 传统脉宽调制(PWM)方案的波形

如图1所示,如果器件的反相和同相输出回路具有较高的匹配度,则两个对称输出信号波形在扬声器或连线上将具有很小的共模(CM)信号(底部的迹线)。注意:50%占空比代表零输入信号(空闲状态)。因此,可以设计一个差分低通滤波器,用于衰减信号波形中高频分量(快速切换所产生的),同时保留有用的低频分量以输出到扬声器。

新一代调制技术

随着市场对D类放大器需求的不断增长,一些制造商最近推出了可独立控制H桥的两个半桥的新一代调制方案。这一调制方案具有两个主要优点:
  • 音频信号较弱或空闲状态时,负载上几乎没有差分开关信号。较传统PWM设计改进了静态电流损耗。
  • 最小脉冲,共模(CM)开关信号有助于降低导通和关断瞬态。BTL输出引脚的空闲状态直流电平(滤波后)接近于GND。因此,滤波元件的不匹配或杂散电容(可能导致放大器导通或关断时出现音频杂音)可减到最小。
显然,这一新技术虽具有一些优点,但放大器输出将不再对称。图2所示的信号波形(以MAX9704立体声D类放大器为例)具有较高的共模分量。 

图2. Maxim的MAX9704立体声D类放大器的调制方案
图2. Maxim的MAX9704立体声D类放大器的调制方案

此类D类放大器对输出滤波器的要求,不同于具有传统差分输入和互补PWM输出的放大器。与PWM相比,MAX9704调制方案的输出往往含有较高的共模信号,设计输出滤波器时需要考虑这点。正如后面的实例所示,传统差分滤波器拓扑结构的效果往往不太理想。 

图3a给出了传统的PWM型D类输出LC滤波器,及其理想值。为简单起见,可假设扬声器负载具有理想的8Ω电阻,并且忽略电感的直流阻抗。通过一些简单的SPICE仿真便可得出问题所在。图3b给出了图3a中滤波器对差分输入信号的频率响应。给出了两个输出结点(FILT1,FILT2)相对于GND的响应曲线。图中给出的器件值在30kHz的频率以上具有理想的二阶滚降,以及理想的瞬态。音频带内群延迟特性在4µs内保持平坦。 

图3. (a) 传统的差模无源LC滤波器,(b) 对于差分输入信号的频响,(c) 共模信号频响。
图3. (a) 传统的差模无源LC滤波器,(b) 对于差分输入信号的频响,(c) 共模信号频响。 

图3c给出了共模输入时同一滤波器的输出。同样,两个输出的响应曲线均相对于GND。输出结果(Y轴偏移)具有很大的尖峰,并具有明显的欠阻尼。结合共模信号下滤波器的等效电路(图4),就很容易理解为什么会出现这一结果。由于仿真时采用理想匹配的电感和电容器,因此阻性负载上差分信号为零,因此不会LC元件不会出现任何衰减。L1与C1谐振(L2与C3同理)产生峰值。在时域内(图中未显示),这种情况将会出现较大的过冲和振荡。注意,输入共模信号时,C2将引入一个零点。因此滤波器的截止频率(此时称作谐振频率可能更加准确)将高于差分输入时的截止频率。 

图4. 共模输入下,图3a中传统LC滤波器的等效电路。
图4. 共模输入下,图3a中传统LC滤波器的等效电路。 

这时你或许会问,这样会有问题么?如果该频率下输出频谱共模能量为零,那么便没什么问题。然而,如果峰值频率与D类放大器开关频率正好相等,则扬声器和连线上将出现较大的输出电压幅度。同时,MAX9704的扩展频谱调制(SSM)模式将使欠阻尼滤波器在音频频带以上引入相当的噪声。扩展频谱模式是引脚可选的,此时高频开关能量为“白噪声”,可以通过逐周期随机调整开关时间降低噪声幅度。这种扩展频谱方案简化了无滤波应用中的EMI兼容性设计。

欠阻尼共模响应问题

针对上述共模问题的解决方案之一是保留图3a的基本结构,但增加抑制高谐振共模信号的阻尼元件。图5a给出了在两个输出节点和GND之间串联RC元件。如果应用中对效率的要求不是很高,可以在输出节点和GND之间仅连接一个电阻,但电容器C4和C5将有助于降低R1和R2上的额外功率损耗。

C4和C5的值应权衡选取:一方面增大C4与C5值有助于R1和R2衰减尖峰,另一方面应减小C4和C5降低高音音频(高达20kHz)下的损耗。如果共模截止频率远大于差模频率,则很容易进行选择,例如只需增加C2相对于C1和C3的比率既可实现。增加共模截止频率,则可减小C4和C5的值,同时增大R1和R2的值,这样将降低R1和R2上的音频损耗。若共模截止频率太高,则电缆上的共模成分就会过多,因此,必须合理选择差分和共模的-3dB频点的比率。本案例的滤波器采用了1:5的比率。 

图5. 在传统LC滤波器的每个输出端增加一个RC网络(a),可以改进差分信号的频响(b)和共模信号的频响(c)。
图5. 在传统LC滤波器的每个输出端增加一个RC网络(a),可以改进差分信号的频响(b)和共模信号的频响(c)。 

图5b为图5a滤波器对差分输入的响应,图5c为共模输入的响应。注意:图5c中共模截止频率较高(-3dB带宽约为110kHz,差分输入为28kHz),带有平缓且合理控制的尖峰。该截止频率远高于最高音频(也低于D类开关频率基波),因此具有较好的效果。 

有些低开关频率(200kHz至300kHz)应用不适合采用图5c所示的方案。对于这类产品可能需要采用其他方法和拓扑结构。MAX9704立体音D类放大器(图6)可设置为940kHz固定频率模式(FFM) (FS1 = 低,FS2 = 高),此时效果最佳。工作在FFM模式下的MAX9704通过引脚选择将开关周期设为恒定值(具有三个可选项),以满足应用需求。 

图6. MAX9704立体声D类功率放大器的典型应用电路
图6. MAX9704立体声D类功率放大器的典型应用电路

图7和图8给出使用图5滤波器对MAX9704进行滤波时的时域性能。两种情况下负载阻抗均为8Ω。图7同时显示了FILT1和FILT2节点的波形图(顶部的迹线),以及得的1kHz差分输出波形(底部的迹线)。顶部迹线的噪声是输出开关信号滤波以后的残余信号(电源电压为15V)。图8为图7迹线的细节显示。注意:纹波主要来自940kHz开关频率,两通道上表现为共模信号的形式。还应注意输出上没有高次谐波,表明有效抑制了EMI (幅射EMI的起始测试频率通常高于30MHz) 。

图7. 用MAX9704驱动图5a电路时FILT1和FILT2上产生的信号波形(同时显示在顶部的迹线),以及差分输出(底部的迹线)。
图7. 用MAX9704驱动图5a电路时FILT1和FILT2上产生的信号波形(同时显示在顶部的迹线),以及差分输出(底部的迹线)。 

图8. 顶部迹线显示了图5a电路输出中残余的纹波电压,纹波成分主要为开关频率基波(此时为940kHz)。滤波器高于该频点的二阶滚降很好的抑制了所有高次谐波。纹波几乎只有共模分量(底部的迹线)。
图8. 顶部迹线显示了图5a电路输出中残余的纹波电压,纹波成分主要为开关频率基波(此时为940kHz)。滤波器高于该频点的二阶滚降很好的抑制了所有高次谐波。纹波几乎只有共模分量(底部的迹线)。

相关说明

本文讨论的滤波器设计均假设负载阻抗为8Ω。音圈电感导致20kHz的频率范围内,多数宽范围动圈扬声器的阻抗变高。该特性有助于实现高效率的无滤波器工作,但选择滤波器件以降低EMI时,应考虑阻抗的上升。

试图评估和描述D类放大器特性时,为了进行器件选型和评估,即便在实验室环境下,音频设计人员也往往需要进行滤波。即使不用滤波器的最终产品能通过EMC测试,仍然可以通过放大器性能测试来发现问题。许多音频分析仪是专为测量传统音频放大器的THD+N或幅度响应而设计的,当用于测试无滤波D类放大器时往往会出现错误。图5所示电路适合用于测试(正确加载8Ω电阻负载),但需要注意33µH的电感可能引入的非线性将限制了THD测量。气隙元件往往具有最佳的测量结果,但尺寸往往限制其在实际产品中的应用! 
关键字:调制技术  滤波器  D类放大器  EMI 编辑:神话 引用地址:采用新的调制技术和滤波器结构减小D类放大器的EMI

上一篇:利用PCB布局技术实现音频放大器的RF噪声抑制
下一篇:D类放大器:基本工作原理和近期发展

推荐阅读最新更新时间:2023-10-12 20:52

基于FPGA的超声诊断仪动态滤波器的设计
引言 超声成像是当今医学影像诊断的主要成像方法之一,它以超声波与生物之间的相互作用作为成像基础,具有对人体无伤害、无电离辐射、使用方便、适用范围广、设备价格低等优点。为了让超声图像能够更加清晰,现代超声诊断仪对超声信号进行动态滤波。动态滤波包含模拟动态滤波和数字动态滤波。模拟动态滤波器要改变器件的参数,从而达到改变通频带中心频率的效果,方法简易,效果很好。同时,控制信号是来自FPGA输送出的数字信号,经D/A转换所得,采用FPGA实现控制信号,实现了很高的精度,达到了预想的效果。 选用cycloneⅢ EP3C16Q240C8在FPGA内实现数字电路,工作频率高,同时各个模块并行工作,能够很好的解决系统时序上的问题。
[模拟电子]
基于EMIRR规范的EMI问题解决方案
随着技术的进步,EMI 对电路正常运行构成越来越大的威胁。这是因为电子应用正转向各种无线通信或者便携式平台。因此大多数干扰 EMI 信号最终都以传导 EMI 的形式进入到 PCB 线迹(trace)中。   当您努力想要设计出一种抗 EMI 电路时,您会发现,模拟传感器电路往往会成为巨大的 EMI 吸收器。这是因为,传感器电路常常产生低电平信号,并且有许多高阻抗模拟端口。另外,这些电路使用更加紧凑的组件间隔,其让系统更容易截获和传导噪声干扰,从而进入到线迹中。   在这种 EMI 情况下,运算放大器 (op amp) 便会成为一个主要目标。我们在本系列文章的第1部分“EMI 如何通过介质干扰电路”看到了这种效应,此文中图 1 所示
[电源管理]
基于EMIRR规范的<font color='red'>EMI</font>问题解决方案
Bourns推出车规级共模芯片电感器,可抑制EMI
美国柏恩Bourns全球知名电子组件领导制造供货商,宣布新的小尺寸12乘10英吋的车规等级共模芯片电感器系列。Bourns最新的共模电感器系列采用铁氧体磁芯设计,双绕线配置以提供紧凑的尺寸和屏蔽结构。SRF3225AB和SRF3225TAC型共模芯片式电感器系列可在极宽的频率范围内提供低辐射和高阻抗,以抑制进入或离开系统的电磁干扰(EMI),使其成为在消费电子,工业用及其他应用领域进行设计和测试的出色解决方案。 Bourns新品新亮点:电感器线芯的两端各有一个0.2 到0.3毫米高的侧壁,旨在帮助增强元组件在板上组装后的机械强度。这两种型号系列均符合AEC-Q200标准,可靠性和耐用性均大幅提高。SRF3225AB型是专
[汽车电子]
Bourns推出车规级共模芯片电感器,可抑制<font color='red'>EMI</font>
功率转换拓朴架构及EMI噪声
所有的 电子 设备都是以直流电供电的,通常是经过 AC 整流。再由 DC-DC 转换器转压,转到负载所需的 电压 。目前,大部份的 DC-DC 转换器己普遍以高频率的开关技术为基础,有效的高频率开关一直被视为模块功率密度大小,性能表现优劣的关键。开关频率愈高,所用的磁性元件和 电容 愈小,反应时间更快,噪声更低,所需滤波器较细小。 但是所有的 DC-DC 转换器还是会产生电磁干扰 (EMI) 或者噪声的,而所产生的噪声水平,不论是共模的,差模的或者是辐射噪声,会因为不同的生产厂,或者是采用不同的转换技术而产生很大的差异,这些差别的根源在于这些噪声是如何产生的。 虽然没有一种功率转换拓朴结构是完美的,但有些拓朴结
[电源管理]
功率转换拓朴架构及<font color='red'>EMI</font>噪声
非隔离式电源的共模电流
非隔离式电源的共模电流可能成为一个电磁干扰 (EMI) 源,您是否曾经消除过它呢?在一些高压电源中,例如:LED 灯泡所使用的电源,您可能会发现您无法消除它们。经仔细查看,发现非隔离式电源与隔离式电源其实并没有什么两样。开关节点接地寄生电容,产生共模电流。 图 1 是一个 LED 电源的示意图,其显示了该降压调节器中 共模电流产生的主要原因。原因就是开关节点接地电容。令人惊讶的是,如此小的一点电容,仍会产生问题。CISPR B 类(适用于住宅设备)辐射规定允许 1 MHz 下 46 dBuV (200 uV) 信号的 50 电源阻抗。这也就是说,仅允许 4 uA 的电流。如果转换器在 100 kHz 下对 Q2 漏极的 200
[电源管理]
非隔离式电源的共模电流
利用滤波器抑制开关电源的电磁干扰
1、引言 开关电源与线性稳压电源相比,具有功耗小、效率高、体积小、重量轻、稳压范围宽等特点,广泛用于计算机及外围设备、通信、自动控制、家用电器等领域。但开关电源的突出缺点是产生较强的电磁干扰(EMI)。EMI信号既具有很宽的频率范围,又有一定的幅度,经传导和辐射会污染电磁环境,对通信设备和电子产品造成干扰。如果处理不当,开关电源本身就会变成一个干扰源。随着电子产品的电磁兼容性(EMC)日益受到重视,抑制开关电源的EMI,提高电子产品的质量,使之符合有关EMC标准或规范,已成为电子产品设计者越来越关注的问题。 2、开关电源产生EMI的原理 开关电源产生EMI的原因较多,其中由基本整流器产生的电流高次谐波干扰和
[应用]
开关电源传导EMI预测方法之建立合理频域模型
开关式稳压 电源 的体积小、重量轻、效率高、稳压范围宽且安全可靠,在很多电子设备中被采用。但是,它像其他电路一样同样存在一些问题,如控制电路复杂,较高的工作频率会对电视机、收音机等产生电磁辐射 干扰 使得收音机出现噪声、电视机出现噪波点,甚至还会通过反馈干扰其他电子设备的正常工作。 1.超音频振荡的干扰问题 开关式稳压 电源 的工作频率多为20-100kHz,属于超音频范围。作为该电源的开关调整器件晶体管或场效应晶体管以相应的频率工作在导通与截止状态,振荡波形近似于方波(还存在过冲),根据傅里叶分析法可以进行分解,即得到直流分量、基波和高次谐波,基波的能量最大,其次是三次、五次、七次……等等。 2.无线电广播与电磁干扰的关系
[电源管理]
Maxim的第3代功放具有AB类的性能和D类的效率
MAX9705第3代超低EMI、单声道、D类音频功率放大器具有AB类的性能和D类的效率。MAX9705能够向一个4负载提供2.3W功率,效率超过85%。在所有可能的瞬变输出电压情况下,有源辐射限制(AEL)电路主动控制输出FET的栅极转换,极大地降低了EMI。AEL防止了传统D类放大器中感性负载的续流特性所引起的高频辐射。 Maxim的D类音频放大器MAX9705。 零死区时间(ZDT)技术使输出FET能够同时切换,而不会产生交叉传导,从而保持了当前最高水平的效率和THD+N性能。获得专利的扩频调制技术不需要传统D类器件中的输出滤波,这些设计理念降低了应用元件数量,延长了
[新品]
小广播
热门活动
换一批
更多
最新模拟电子文章
更多每日新闻
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved