任意波形发生器的设计电路图

最新更新时间:2014-04-19来源: 互联网关键字:任意波形  发生器  设计电路 手机看文章 扫描二维码
随时随地手机看文章

任意波形发生器

技术分类: 测试与测量   来源:电子产品世界/ 西北工业大学 航海学院 任绪科 赵俊渭 周明  

引言

        在电子工程设计与测试中,常常需要一些复杂的、具有特殊要求的信号,要求其波形可任意产生,频率方便可调。通常的信号产生器难以满足要求,市场上出售的任意信号产生器价格昂贵。结合实际需要,我们设计了一种任意波形发生器。电路设计中充分利用MATLAB的仿真功能,将希望得到的波形信号在MATLAB中完成信号的产生、抽样和模数转换,并将得到的数字波形数据存放在数据存储器中,通过单片机和CPLD控制,将波形数据读出,送入后向通道进行A/D转换和放大处理后得到所需的模拟信号波形。利用上述方法设计的任意波形发生器,信号产生灵活方便、功能扩展灵活、信号参数可调,实现了硬件电路的软件化设计。具有电路结构简单、实用性强、成本低廉等优点。


          系统框图  

&nb 任意波形发生器的设计思想,是利用MATLAB的强大仿真功能,方便、快捷的生成给定频率、周期、脉宽的任意波形数据;并将数据预存在数据存储器中。在单片机控制下,利用CPLD电路产生地址读出数据,送入D/A转换电路,得到所需的任意波形信号。系统结构框图如图1;图中分频电路和地址发生器由CPLD实现。

sp;       

系统框图

   图1   系统框图

         电路设计及实现

        单片机控制电路

        单片机采用AT89C52芯片,通过软件编程产生所要求的控制信号。主要的控制参数包括:信号周期、脉宽;分频电路的开始信号、地址发生器的复位信号;E2PROM的选通信号;D/A转换电路的选通信号。在具体电路中,端口P1.0控制分频电路的启动、P1.1控制地址发生器的清零,P2.0控制28C256和AD7545的选通信号。单片机工作在定时器0方式,软件设计利用C语言实现。流程图如图2所示。

软件流程图

图2   软件流程图

         波形数据生成

        MATLAB作为一款优秀的数学工具软件,具有强大的运算功能;可以方便的产生各种信号波形,在软件中实现波形信号的产生、抽样和模数转换。设计的任意波形发生器,数据存储器选用28C256芯片,信号波形通过MATLAB仿真产生;得到的波形数据存放在数据存储器28C256中。具体设计中,我们要求产生周期为200ms,脉宽为5ms的单/调频混合信号,其中单频信号的脉宽为4ms,频率为30KHz;调频信号的脉宽为1ms,频率为30KHz_35KHz。在MATLAB中设定抽样率为500KHz,得到了2500个波形数据。这些混合波形数据在烧录入数据存储器的过程中,由于波形数据较多,直接用手工录入数据存储器中不仅费时且容易出错。为克服这一弊端,通过MATLAB编程的方法将产生的波形数据按照HEX文件的INTEL格式存放,然后将这些波形数据整批次烧录入数据存储器中。采用上述方法,波形数据生成简单,快捷;可根据需要在软件程序中方便地修改信号参数;无需改动硬件电路即可实现信号参数的功能扩展。

         CPLD逻辑设计

        分频电路采用两片74HC163实现。通过分频电路,将12MHz的晶振标准频率分频后,得到500KHz的抽样频率,作为地址发生器的时钟。分频电路的工作由单片机控制。

        地址发生器电路由3片74HC163组成,时钟频率为500KHz,有分频电路提供;和预存的波形数据抽样频率相一致,以实现数据的无失真读出。

电路设计中,采用ALTRA公司的EPM7128AETC100-10芯片,在MAX+PLUSⅡ开发环境中完成分频缏泛偷刂贩⑸ 鞯缏返纳杓啤; 贑PLD的电路设计,可以省去大部分的中小规模集成电路和分离元件;使得电路具有集成度高、工作速度快、编程方便、价格低廉的显著优点。通过CPLD和数据预生成的信号实现方法,无需改变硬件电路,即可实现信号参数的任意调整;同时外围电路十分简单,为工程调试和应用带来了方便。   

         D/A转换电路

        D/A转换电路的实现如图3所示。 电路中,AD7545将波形数据转换为模拟信号;LF353进行信号滤波和整形。

D

图3   D/A转换电路

         结语

       采用上述方法设计的任意波形发生器,通过软件和硬件结合,充分发挥MATLAB强大的仿真功能,尽可能的减少了硬件开销。根据实际需要,可产生正弦波、三角波、锯齿波、方波等多种波形,可以产生线性调频信号(LFM),单频脉冲信号(CW),余弦包络信号以及他们之间的组合信号等多种波形参数;满足了工程需要。该任意波形发生器已应用于在研项目“水中运动目标轨迹测量”中,效果良好。

关键字:任意波形  发生器  设计电路 编辑:神话 引用地址:任意波形发生器的设计电路图

上一篇:升降压斩波电路主电路框图
下一篇:锯齿波波形发生器电路图

推荐阅读最新更新时间:2023-10-12 21:01

技术:基于单片机的多模式蓄电池充电电路设计
引言 一个好的充电器对蓄电池的使用寿命具有举足轻重的作用,智能充电器具有操作简单、可靠性高和通用性强等优点,是充电器家族中的一个重要的组成部分,也是未来充电器发展的主要方向。所谓智能充电器是指能根据用户的需要自主选择充电方式、对不同类型的充电电池进行充电、并且在充电过程中能对被充电电池进行保护从而防止过电压和温度过高的一种智能化充电器。 充电控制器需要长时间控制并要进行电压检测,若用传统电路实现则电路复杂,采用单片机控制可大大减化电路,降低成本。本充电器用AT89C51单片机进行充电定时控制。在定时充电期间若电池电压高于另一值则停止充电。采用从涓流充电、恒流充电、恒压充电到浮充电的方法,充电完成后,自动转为浮充电, 以防止电池放
[电源管理]
技术:基于单片机的多模式蓄电池充电<font color='red'>电路</font><font color='red'>设计</font>
电流模式控制DC/DC转换器中的电流检测电路设计
   电流检测 电路是电流模式控制所必需的, 通过检测功率开关管上的电流, 然后输出一个电流感应信号与斜坡补偿信号进行叠加并转换成一个电压信号, 再与误差 放大器 的输出进行比较, 从而实现电流模式开关转换器电流内环的控制。其实现方法有很多种, 常见的有两种, 一种是与功率管串联一个电阻Rsen,另一种是与功率管并联一个并联检测管复制比例电流, 并联检测管复制比例电流的检测方法, 又有两种主要的实现结构, 一种是采用运放的结构, 另一种是利用反馈的方式。如果采用运放, 显然会增加电路的复杂性, 而且也会增加功耗。本文根据具有 反馈控制 电流源的原理来设计电流检测电路中的反馈网络。    1 反馈控制电流源的原理   电路
[电源管理]
电流模式控制DC/DC转换器中的电流检测<font color='red'>电路</font><font color='red'>设计</font>
一款12V的单片开关稳压电源电路设计
  +12V、0.5A单片开关稳压电源的电路如图所示。其输出功率为6W。当输入交流电压在110~260V范围内变化时,电压调整率Sv≤1%。当负载电流大幅度变化时,负载调整率SI=5%~7%。为简化电路,这里采用了基本反馈方式。   接通电源后,220V交流电首先经过桥式整流和C1滤波,得到约+300V的直流高压,再通过高频变压器的初级线圈N1,给WSl57提供所需的工作电压。从次级线圈N2上输出的脉宽调制功率信号,经VD7、C4、L和C5进行高频整流滤波,获得+12V、0.5A的稳压输出。反馈线圈N3上的电压则通过VD6、R2、C3整流滤波后,将控制电流加至控制端C上。由VD5、R1,和C2构成的吸收回路,能有效抑制漏极上的反向
[电源管理]
一款12V的单片开关稳压电源<font color='red'>电路</font><font color='red'>设计</font>
马达控制三相变频器中相电流Shunt 检测电路设计
概述 磁场定向控制算法(FOC, Field Oriented Control)通过一系列的前向Clarke运算和Park运算将检测得到交流电机的三相相电流处理,间接得到转矩分量和磁通分量,经过经典的PI算法对其进行精确控制,从而保证电机能以最佳的扭矩高效运行,实现精确的速度变化控制,算法框图如图1。由此可知,相电流检测的精度是决定整个电机控制性能的一个重要因素。一般来说,相电流检测共有闭环霍尔,Shunt电阻,开环霍尔三种方式。Shunt电阻因其精度较高(全温范围校正后精度2%至5%),成本低而得到广泛应用。 1 Shunt 电流检测电路设计 图1 磁场定向控制算法框图 常用的Shunt电流检测电路如图2所示。
[嵌入式]
层出不穷的信号发生器可有效节省测试时间
  所有电子电路和电子设备都接收输入信号,然后将其处理成新的不同的输出信号。工程师在设计和测试电路及设备时会从哪里获得这些输入信号呢?一种可能是为某种特殊应用建立自己的信号源,但这并非必需。   这是因为不管正在设计或等待测试的设备是何种类型,都可以用现成的信号发生器产生合适的输入信号。信号发生器就象是工作台上的示波器、万用表和电源一样普遍。不管是模拟还是数字类型的信号发生器,它们都能用来节省设计与测试时间,确保产品正常工作(图1)。   图1:基于昂贵多管脚MCU的多功能卡读卡器接口设计。    函数发生器   基本的函数发生器可以产生频率从约0。2Hz到20MHz左右的正弦波、方波和三角波信号。
[测试测量]
层出不穷的信号<font color='red'>发生器</font>可有效节省测试时间
别被表面现象迷惑,谨防模拟或数字电路设计误区
  人类是不同寻常的“动物”,有些时候,在某些方面,一知半解、自负和盲目自大比无知更危险,比如电路设计,可能导致电路无法正常工作。当看到有经验的工程师犹豫不决时,某些人觉得自己还不如和没有经验的人合作,不明白为什么这些经验丰富的工程师反而进退两难。这里有三个例子,其中的简单分析能给设计者一些启发,在未来的设计中避免类似问题。   有些情况下,设计人员往往错误理解器件的工作方式,以至于做出一些奇怪的假设,导致器件的错误使用。不幸的是,现在的工程院校几乎都把注意力集中在数字技术,几乎完全忽略了模拟设计。使得没有模拟设计经验的数字工程师只能从试验、失败中获得模拟知识。由此产生的一些结果会使Rube Goldberg为之得意。(谁是R
[电源管理]
别被表面现象迷惑,谨防模拟或数字<font color='red'>电路</font>的<font color='red'>设计</font>误区
基于芯片A7700的射频电路设计
  由于消费类产品对无线通信功能的需求不断增长,针对这些需求目前存在各种技术方案,这些方案的优越性可用下面五个关键指标来衡量:成本,成本越低,应用越广。市场经验说明,当成本每降低10%,市场潜力将会扩大100%;传输范围,短距离无线方案的适用范围一般在室内30米以内;电源效率:无线设备在许多情况下是由电池供电的,因此电池使用寿命是一个关键指标,这一问题将会间接地反映在成本上;服务质量(QoS),在满足数据传输率要求条件下提供可靠的数据链接;高数据传输率,该参数可为无线消费产品市场开辟新的应用领域。过去由于成本问题而无法实现的应用,现在也可通过恰当的设计来实现。   短距离无线发送器和收发器在自动仪表读数、建筑物控制/安全/自动
[网络通信]
高速数字电路设计与仿真
  高速数字系统设计成功的关键在于保持信号的完整,而影响信号完整性(即信号质量)的因素主要有传输线的长度、电阻匹配及电磁干扰、串扰等。设计过程中要保持信号的完整性必须借助一些仿真工具,仿真结果对PCB布线产生指导性意见,布线完成后再提取网络,对信号进行布线后仿真,仿真没有问题后才能送出加工。目前这样的仿真工具主要有cadence、ICX、Hyperlynx等。Hyperlynx是个简单好用的工具,软件中包含两个工具LineSim和BoardSim。LineSim用在布线设计前约束布线和各层的参数、设置时钟的布线拓扑结构、选择元器件的速率、诊断信号完整性,并尽量避免电磁辐射及串扰等问题。BoardSim用于布线以后快速地分析设计中的信
[嵌入式]
小广播
最新模拟电子文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved