DAC基础知识:静态技术规格

最新更新时间:2015-07-02来源: EEWORLD关键字:DAC 手机看文章 扫描二维码
随时随地手机看文章
  所有DAC之间的共性就是技术规格的定义以及说明。这篇文章将会论述静态DAC技术规格。静态DAC技术规格包括对DAC在DC域中所具有的特性的描述。在DC域中时,DAC的数字与模拟定时现象不属于这一组技术规格。

  图1

  DAC基础知识:静态技术规格

  虽然这3个DAC拓扑互不相同,但它们的技术规格与电气描述非常类似。

  一个主要的静态DAC技术规格就是理想转换函数(图2)。在对这个普通转换函数的图示中,可以轻松地体会和理解零代码、偏移、满量程以及增益的定义。一旦你理解了上述概念,差分非线性 (DNL),积分非线性 (INL)以及单调性技术规格也就再次成为理想转换函数的另一个导函数。

  图2

  DAC基础知识:静态技术规格

  理想DAC转换函数

  图2显示了一个DAC是如何为数字输入代码的一个离散数值生成单个模拟输出值的方式。图中数字输入代码的顺序是单极的,其中代码以标准二进制的方式增加。

  图2中DAC转换函数的模拟范围是从零至模拟输出满量程 (FS) 值。DAC电压基准 (VREF) 建立了转换器的最低有效位 (LSB) 或代码宽度,并且设定了满量程范围 (FSR)。LSB的大小等于VREF/ 2N。

  在图2中,“N”等于转换器的分辨率,而2N等于转换器单个位的数量。DAC所具有的代码的数量等于2N。对于3位转换器来说,代码数量等于23或8。这个理想转换函数的转换公式为VOUT = VREF x (CODE/2N),并且满量程输出电压等于VREF – 1LSB。

  零代码误差

  图3中,DAC的零代码误差是最易理解的静态技术规格。我们假定这个值是针对一个单极、单电源DAC而言的,这个DAC的完全理想最小输出电压为0伏。当将数字0值载入到DAC寄存器中时,零量程误差出现在DAC的模拟输出引脚上。这个误差是由内部输出放大器的输出摆动性能导致的。对于单电源DAC来说,零量程误差始终为正值,而这个技术规格的单位为毫伏或微伏。

  图3

  

  DAC的内部输出放大器因不能达到负电源轨而导致的零误差运行状态。

  偏移误差

  然而,偏移误差是不同的。偏移误差在整个DAC转换曲线的大部分范围内存在。在图4中,在理想转换曲线的每一个代码上,模拟偏移误差都会变化。从图中你能够看到,在沿着x轴的垂直方向上,具有偏移误差的转换曲线与理想曲线的相同程度。这个技术规格的单位通常为毫伏。

  图4

  

  偏移误差可为正,亦可为负,但是它始终以同样的误差影响着每一个代码。

  增益误差

  增益误差这个概念有些难以理解。总的来说,增益误差描述的是理想DAC曲线斜率的变化。图5对这个概念进行了说明。增益误差技术规格通常以FSR的百分比来表示,并且在消除偏移误差之后进行计算。

  图5

  

  DAC的增益误差使理想转换函数绕着零交叉点旋转

  差分非线性

  差分非线性 (INL) 是一个静态技术规格,有时也被称为差分线性。DNL是实际模拟输出步长与1LSB的理想步长值的最大偏离。这在整个实际转换函数曲线上进行评估(图6)。由于每个代码也许都需要调整,所以很难校准这个DAC误差。

  图6

  

  DNL代表每个实际电压输出与理想曲线间的差异。一个12位DAC DNL误差曲线,其中x轴等于DAC代码(0至4095),而y轴等于DNL。

  例如,一个对于1 LSB数字代码变化发生1.5 LSB输出改变的DAC表现出0.5 LSB的差分非线性。DNL大于1也许说明存在缺失的代码。差分非线性的测量单位为分数位或满量程的百分比。出现DNL问题的DAC所生成的误差会影响到增益控制应用。

  单调性

  作为一名音乐家,我从来都不理解这个术语的来源。在音乐领域,单调的定义就是只有一个音调。但接下来我们要从另外一个角度来看看这个DAC技术规格的定义。

  少于 -1 LSB的差分非线性为DAC产生一个非单调转换函数(图7)。如果DAC是非单调的,那么DAC模拟输出的振幅小于数字输入代码的增加量,反之亦然。

  图7

  

  非单调DAC运行状态在模数转换关系中出现反转。

  一个DAC所表现出的任何非单调运行状态无法确定是否会对系统造成影响。例如,在音频应用中,听众能够听到一个短暂的较小的模拟输出电压,而无法察觉较大的输入代码。在另外的应用中,这会是一个很明显的问题,有可能导致系统振荡。例如,在一个DC电机控制系统中,相对于输入代码的增加而产生的模拟输出电压减少,也许很容易地被误解为系统将通过减少输入代码来执行校正。

  积分非线性

  另外一个DAC静态技术规格为积分非线性 (INL),它是DAC真实转换函数到理想转换函数轻微偏离的测量值(图8)。积分非线性、线性误差、或者INL是DNL误差的最高值。这个技术规格使用最优直线或端到端(端点线性)直线来量化INL,单位为LSB。

  图8

  

  INL技术规格定义了最优直线或端到端直线与理想DAC转换函数之间的最差情况距离。

  诸如仲裁波形发生器的应用需要有较好的INL。

  在数据表之间比较技术规格

  当将一个数据表与另一个数据表进行比较时,技术规格也许会有不同的测量单位。例如,在一个数据表中,偏移误差的单位也许是伏,而在另外一个数据表中,单位也许是LSB或FSR的百分比。表1提供了在LSB、伏、FSR百分比和PPM(百万分率)之间的转换计算方法。

  表1

  

  技术规格单位转换

  结论

  DAC的偏移、增益、INL、和DNL运行状态会以多种方式影响总体系统的有效性。但是,还有很多其它的影响因素。在这个DAC系列的第4部分,我们将涉及动态技术规格的定义,诸如稳定时间、毛刺脉冲和噪声。

  参考文献

  · “使你的DAC更精确”,Baker,Bonnie,EDN,2006年10月26日

  · “缩小差距:DAC应用教程 (SNAA129),”McCulley,Bill,德州仪器 (TI)

  · “缩小差距(第3部分):DAC应用回顾,”McCulley,Bill,EETimes Europe,2010年7月6日

关键字:DAC 编辑:冀凯 引用地址:DAC基础知识:静态技术规格

上一篇:ADI推出四通道、24 GHz接收机下变频器 ADF5904
下一篇:超范围转换器恢复迅速

推荐阅读最新更新时间:2023-10-12 21:03

模数转换器评估:与标准有关系吗?
我们乘坐的航班刚刚开始下降高度,这时坐在我旁边的一位先生转过头来和我聊起工程学——他看到我在阅读一本工程学期刊。这位邻座的先生说,他是电气与电子工程师协会 (IEEE) 会员,而他原来的志向就是希望能够成为某个标准委员会的一员。我问他正致力于哪种标准的制定工作—它与电站安全有关。直到飞机在航站楼前停下来,我们才结束了对话,然后分道扬镳。讨论间,我谈到标准非常重要,并以我所在行业的角度告诉他,我是多么吃惊的感到直到2000年我们才有了一个IEEE标准,才能对模数转换器 (ADC) 的规范和测试方法进行定义。 这一点值得我们注意,因为至少在20世纪20年代模数转换便为人们所熟知,而商用ADC的出现却是在20世纪60年代 。数十年
[模拟电子]
模数转换器评估:与标准有关系吗?
STM32学习笔记13——DAC
DAC 简介 DAC 模块是 12 位电压输出数模转换器。DAC 可以按 8 位或 12 位模式进行配置,并且可与 DMA 控制器配合使用。在 12 位模式下,数据可以采用左对齐或右对齐。DAC 有两个输出 通道,每个通道各有一个转换器。在 DAC 双通道模式下,每个通道可以单独进行转换;当 两个通道组合在一起同步执行更新操作时,也可以同时进行转换。可通过一个输入参考电压引脚 VREF+ (与 ADC 共享)来提高分辨率。 DAC 主要特性 ● 两个 DAC 转换器:各对应一个输出通道 ● 12 位模式下数据采用左对齐或右对齐 ● 同步更新功能 ● 生成噪声波 ● 生成三角波 ● DAC 双通道单独或同时转换 ● 每个通道都具
[单片机]
STM32学习笔记13——<font color='red'>DAC</font>
18位、线性、低噪声、精密双极性±10 V直流电压源
  电路功能与优势   图1所示电路提供18位可编程电压,其输出范围为−10 V至+10 V ,同时积分非线性为±0.5 LSB、微分非线性为±0.5 LSB,并且具有低噪声特性。     该电路的数字输入采用串行输入,并与标准SPI、QSPI、MICROWIRE®和DSP接口标准兼容。对于高精度应用,通过结合使用AD5781、ADR445 和 AD8676 等精密器件,该电路可以提供高精度和低噪声性能。     基准电压缓冲对于设计至关重要,因为DAC基准输入的输入阻抗与码高度相关,如果DAC基准电压源未经充分缓冲,将导致线性误差。AD8676开环增益高达120 dB,经过验证和测试,符合本电路应用关于建立时间、失调电压和低阻抗
[电源管理]
18位、线性、低噪声、精密双极性±10 V直流电压源
TI具低干扰及内部参考的四通道DAC
  德州仪器推出系列四通道数模转换器 (DAC),其具备0.15nV-s的低干扰以及温度漂移为 2ppm/C 与初始精度为 0.02% 的内部 2.5V 参考电压。该系列 16 位、14 位以及 12 位多功能器件拥有多通道性能,适用于工业过程控制、数据采集以及仪表应用等领域中通道数量较高的便携式系统。   DAC8564/65(16 位)的特性包括可实现器件+/- 0.5 LSB 差分非线性 (DNL) 以及 +/- 4LSB 的积分非线性 (INL)。DAC8164/65(14 位)与 DAC7564/65(12位)的相对准确度均为 +/- 1LSB。3V 时功率仅为 2.9mW 的超低功耗以及可将5V 电压下的电流消耗
[新品]
适用于HDTV应用的8位DAC
在一般的数/模转换器的设计中,译码结构通常采用分段结构。在一般的设计中,为了减少延时,通常使用锁存器,同时配合复杂电流源结构,这种结构通常需要较大的能耗,并且采样率不是足够高。为了得到更高的采样率和更好的线性度,在此基于TG结构,设计了单位电流单元矩阵和译码器电路,同时采用简单的电流单元电路设计。 1 结构选择 在此,采用电流舵型DAC设计。这是因为电压型DAC所需元器件多,开关层数也较多,一般用于低速转换器内;电荷型DAC随精度的升高,面积急剧增大,而且对寄生电容敏感;电流型DAC具有高速的优势,但不适用于低压电路。电流舵型DAC是对电流型DAC的改进,常用于分段电路中。 数/模转换器的译码方式一般分为二进制、温度计和分段式。温
[模拟电子]
适用于HDTV应用的8位<font color='red'>DAC</font>
ADI推出三款发射DAC用于航空航天和防务
最近,ADI公司推出三款高性能16/14位发射DAC AD9117/AD9122/AD9739,继续保持其不断创新的势头。这些DAC可工作在扩展温度范围内,采用高度可靠的封装,可用于雷达、安全通信、航空电子和其他防务电子应用。ADI公司的14位双通道AD9117、16位双通道AD9122和14位单通道AD9739发射DAC专为信号合成应用(包括脉冲调制波形生成)以及正交数字结构中合成调制载波而设计。 对于引脚架构封装,除了扩展温度范围,一些航空航天和防务应用要求采用其他解决方案代替亚光锡(Sn),以便消除对于镀锡工艺中产生锡须问题的担忧。这些DAC可采用NiPdAu引脚架构或含铅BGA封装,不存在锡须问题。NiPdAu引脚架
[模拟电子]
新兴应用推进数据转换器市场发展
  相对于其他产品日新月异的进步,以及迅速的更迭,模拟产品的发展则一直非常平稳,但这并没有妨碍模拟产品在市场上的地位以及重要性。以数据转换器市场为例,它已经成为模拟芯片厂商的必争之地。即使在去年模拟IC市场整体下滑的环境下,数据转换器市场仍然保持着增长的态势,这也给整体低迷的市场带来了一丝暖意。   ADI高精度模拟产品应用工程师经理Reza Moghimi指出,虽然2007年数据转换器市场的增速要远低于2006年,这一现象在2007年下半年表现尤为明显。但市场表现疲软的主要原因不是因为需求大幅下跌,而是由于2006年和2007年上半年的增长过于强劲。此外,经济发展放缓也是影响数据转换器市场增长的一个因素。“幸运的是,从
[模拟电子]
基于18位数模转换器AD760的波形发生器的设计
1.前言   信号发生器既可以构成独立的信号源,也可以是高性能网络分析仪、频谱仪及其它自动测试设备的组成部分。信号发生器的关键技术是多种高性能仪器的支撑技术,因为它能够提供高质量的精密信号源及扫频源,可使相应系统的检测过程大大简化,降低检测费用并极大地提高检测精度。但是目前的产品体积大,精度低,无法满足用户对精度和便携性要求高的波形发生器的需求。   AD760是AD公司开发的一种具有自校正功能的16/18位DAC器件,片内带有电压基准,双缓冲寄存器和输出放大器 。特别是在采用AD760的18位数据输入时能够获得很高的精度。本文针对高精度波形发生器的开发,进行了以AD760为核心的波形发生器的软硬件系统设计。 2.系统
[模拟电子]
小广播
最新模拟电子文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved