基于CPLD的模数转换组合研究

最新更新时间:2006-09-11来源: 微计算机信息关键字:脉冲  预处理  模块 手机看文章 扫描二维码
随时随地手机看文章

  1引言

  A/D转换组合是雷达目标诸元数据转换、传输的核心部件,一旦出现故障,目标信号将无法传送到信息处理中心进行处理,从而导致雷达主要功能失效。某设备的A/D转换设备结构复杂,可靠性差,可维修性差,故障率高,因此,采用CPLD技术和器件研究A/D转换组合,改善该设备的总体性能。

  2 A/D转换组合工作原理剖析

  A/D转换组合作为武器系统的核心部件,接口特性和功能与武器系统的兼容,是新A/D转换组合研制成功的前提,因此,必须对引进A/D转换组合进行详细的分析研究,提取接口特性及其参数,分析组合功能和性能指标。

  2.1 组合工作原理及端口信号说明

  原A/D转换组合由五个装置组成,这五个装置形成两个完全相同且互相独立的通道。每个通道包括一个预处理装置、一个模数转换和微调自检装置,如图1所示:??? A/D转换组合与武器系统其它部分的电路连接端口有6个:端口1为电源端口,X2、X4为相互正交的输入模拟信号,X5、X6为输入脉冲信号,X3为输出数字信号。

  输入模拟信号X2和X4进入预处理装置,形成便于A/D转换的信号。此信号进入模数转换和微调自检装置,得到输出数字信号X3。每个通道将输入模拟信号数字化,在端口X3形成8个数据位和1个符号位,符号位与输入模拟信号极性相对应。X3同时实现对两个通通及整个组合的工作自检。

  为保证组合的正常工作,须向同步装置输入脉冲信号X5和X6。X6称为“计数脉冲”,用作A/D转换的时钟。X5称为“自动微调脉冲”,用于A/D转换精度的微调和工作状态的自检。同步装置根据X5和X6形成若干脉冲,这些脉冲分成完全相同的两组同时送给两个通道。

  2.2结构组成分析

  (1)同步装置

  同步装置由三个子模块组成,形成一个闭环,如图2所示。

 

  模块1的输入为X5、X6和来自模块3的四个脉冲T1、T2、T3、T4,虽然X5、X6都输入模块1,但是只有X6与此闭环有关,它们在模块1内经过一系列逻辑单元处理,输出为一系列脉冲,包括询问脉冲X(X=1,2,3,4)、寄存器询问脉冲、选择脉冲、输出自动微调脉冲和其它脉冲。模块2的输入R是矩形波信号,输出S类似于三角波。模块3的主体是四个电位器和四个电压比较器。四个电位器经过精心调节在滑动端形成四个等间隔的基准电压。四个电压比较器将S和这些基准电压分别进行比较,得到四个TTL电平脉冲信号T1、T2、T3、T4。T1、T2、T3、T4和S、R、X6时序关系如图3所示。

 

  输出脉冲与X6的时序关系如图4所示。

 

(2)预处理装置

  预处理装置包括模拟多路开关电路、求模电路、取符号电路和存储电路,其组成如图5所示。



  X2(或X4)是双极性信号,在被模拟多路开关电路选通后,通过求模电路变为正极性信号,此正极性信号进入存储电路进行跟踪/保持。另外,模拟多路开关电路的输出信号还进入取符号电路,得到符号位。

  (3)模数转换和微调自检装置

  该装置包括模数转换电路、自动微调电路和自检电路,其中模数转换电路又由四个模数转换模块组成,如图6所示。

 

图6 模数转换和微调自检装置内部结构图

  SH进入模数转换模块1,在其内部被电阻网络分压,分压结果与内部基准电压进行比较,比较结果被编码,得到模数转换结果的最高两位D7D6;设数字输出D7×27+D6×26对应的模拟信号幅度为U1,在模数转换模块1内部,将SH和U1相减,输出RM1=SH-U1,RM1进入模数转换模块2,按同样的方式得到D5D4;模数转换模块3、模数转换模块4也完全类似,分别输出D3D2(第3位和第2位)和D1D0(第1位和第0位)。这样就得到了模数转换结果的8个数据位。

  3 A/D转换组合设计实现

  新A/D转换组合的几何尺寸应与引进A/D转换组合吻合,输入输出接口特性应与引进A/D转换组合完全一致。鉴于原A/D转换组合采用分立元件和低集成度芯片设计,导致电路复杂,故障率高的缺点,本文采用高集成度的CPLD芯片设计国产A/D转换组合。

  3.1总体功能设计

  新A/D转换组合总体设计框图如图7所示,当X5(自动微调脉冲)为低电平时,地址形成逻辑形成的地址信号使模拟多路开关选通来自前端接收系统的模拟输入信号X2(或X4)。X2(或X4)经过模拟多路开关送入模数转换电路进行转换。模数转换电路输出的数字信号经数据处理逻辑变换后,得到与原模数转换组合码制相同的10位输出信号,即8位数据位、1位符号位和1位奇校验位。这10位信号经寄存器锁存后,通过驱动电路送至后端计算系统。

 

点击看原图

  当X5为高电平时,地址形成逻辑形成的地址信号使模拟多路开关选通标准电压电路提供的一个标准电压。标准电压进入模数转换电路形成数字量,基准自动微调逻辑根据此数字量调整单极性数模转换电路的输入数字量,零点自动微调逻辑根据此数字量调整双极性数模转换电路的输入数字量。单极性数模转换电路的输出模拟量为模数转换组合的基准电压,双极性数模转换电路的输出模拟量为模数转换电路的负模拟输入端电压。这样就实现了通道1(或通道2)模数转换精度的自动微调。

  自检检测逻辑从寄存器取出对标准电压进行模数转换得到的数字量,并与预存储值比较,根据比较的结果确定通道1(或2)是否正常工作,并形成相应的指示信号送入驱动电路。驱动电路根据通道1自我检测逻辑输出的指示信号和通道2自我检测逻辑输出的指示信号形成“通道1正常”信号、“通道2正常”信号和“转换组合正常”信号,并送给后端计算系统。

  X5(自动微调脉冲)和X6(计数脉冲)分别通过二选一开关进入缓冲及延迟电路,形成一组脉冲信号送入时序逻辑。时序逻辑根据此组脉冲信号形成系统正常工作所需的多种脉冲信号。数据处理逻辑、寄存器、地址形成逻辑、基准自动微调逻辑、零点自动微调逻辑、自我检测逻辑、时序逻辑都在Xilinx公司的大规模可编程逻辑器件XC95108内实现(图7中每个虚线框代表一片XC95108)。通道1和通道2分别使用一片XC95108。

  调试脉冲形成电路输出X5A和X6A信号。在国产化模数转换组合脱离战车系统进行维修时,通过二选一开关选通X5A信号和X6A信号以替代前端输入的X5和X6,从而方便了该组合的维修。

  3.2模数转换电路的设计

  模数转换电路是整个国产化A/D转换组合的核心电路,需要精心设计。

  首先是A/D转换芯片的选择,根据引进A/D转换组合的工作原理,A/D转换芯片需要满足如下4点要求:

(1)双极性输入;

(2)分辨率≥9位;

(3)最大采样速率≥1.5MSPS;

(4)无流水延时,且模数转换在大约200ns内完成。

  根据上述要求,同时考虑价格及功耗等因素,选择逐次逼近式A/D转换芯片LTC1412。LTC1412引脚说明见有关技术资料。其典型用法如图8所示。

 

  电路设计中,LTC1412采用双端输入方式,即, 端输入模拟多路开关送来的模拟信号, 端输入双极性数模转换电路送来的微调信号。 接数字地,从而使LTC1412始终处于选通状态。LTC1412的基准电压可由外部调节,变化范围在1.25V和3V之间,此处使用外部基准,基准电压由单极性数模转换电路提供。 端由缓冲及延迟电路送来的采样时钟驱动。

  原A/D转换组合对X2(或X4)的采样时刻相对于X6上升沿滞后约10ns,新设计A/D转换组合也与此保持一致。模数转换电路在输入时钟信号的下降沿采样,而此输入时钟信号的下降沿相对于X6上升沿正好滞后约10ns。

  LTC1412的所有正电源端均连接到+5V模拟电源,所有地端均连接到模拟地平面。虽然LTC1412的分辨率为12位,但产品说明给出的评估板只是两层板,因此在设计PCB版图时也只使用两层板。在PCB版图上全部使用表贴电容进行滤波和去藕,可以在抑制噪声方面起到重要作用。

  4结束语

  本文采用CPLD器件设计了新的A/D转换组合,替代了原组合,同时提高了可靠性,改善了转换位数、功耗等技术指标,已经定型并投入生产。

  参考文献

  [1] 沈兰荪编著.高速数据采集系统的原理与应用[M]. 北京:人民邮电出版社,1995.

  [2] 常青等.可编程专用集成电路及其应用与设计实践[M],国防科技大学出版社,1998.

  [3] 中国集成电路大全-TTL集成电路[M].北京:国防工业出版社,1996.

关键字:脉冲  预处理  模块 编辑: 引用地址:基于CPLD的模数转换组合研究

上一篇:把DAC的输出从单端模式转换到差分模式的电路
下一篇:MAXl320型A/D转换器及其在微机保护中的应用

推荐阅读最新更新时间:2023-10-12 20:12

脉冲高速峰值保持电路
窄脉冲高速峰值保持电路 电路的功能 “6-6”介绍的峰值保持电路,其OP放大器A1的转换速度高,驱动电流大,但当CH的 容量较大时,须要较长的充电时间,难以实现高速保持。本电路的反馈形式与前节介 绍的基本相同,只是在元件选择和CR参数的确定方面有其特点。因此可用来保持窄脉 冲信号的峰值。 电路工作原理 工作过程与“6-6”节电路基本相同。下面介绍一下本电路的设计要点:OP放大器A1 是高速OP放大器,因起缓冲作用,所以选用了稳定性好的LM6361N。CH的容量很小, 只有100PF,可以进行失调调节,输入为0V,用VR1调整输出以确定置偏。TT1的栅极 、CH的外围是高阻抗,组装时应予注意。
[模拟电子]
窄<font color='red'>脉冲</font>高速峰值保持电路
笔记本计算机进入Vista过渡期,促2007年DRAM放量增长
根据DRAMeXchange的预估,笔记本计算机出货量在2007年应维持稳定增长,除取代台式电脑现象持续之外,微软(Microsoft)Vista操作系统的推出,以及笔记本计算机本身规格的提升,都将继续推动笔记本计算机的增长。DRAMeXchange预期,2007年全球笔记本计算机出货量将维持20%的增长率,全年出货量预计到达8,800万台。 DRAMeXchange表示,笔记本计算机现正处于过渡气息浓厚的时间点。今年以来Intel处理器已由Pentium M跨向Core Duo再迈入Core 2 Duo、Windows Vista呼之欲出,厂商纷纷推出内建WWAN模块等新规格机种。除CPU、操作系统、接口等规格方面的变化外
[焦点新闻]
智能功率模块加速迈向基于SiC的电动汽车
当前,新型快速开关的碳化硅(SiC)功率晶体管主要以分立器件或裸芯片的形式被广泛供应,SiC器件的一系列特性,如高阻断电压、低导通电阻、高开关速度和耐高温性能,使系统工程师能够在电机驱动控制器和电池充电器的尺寸、重量控制和效率提升等方面取得显著进展,同时推动SiC器件的价格持续下降。 然而,在大功率应用中采用SiC还存在一些重要的制约因素,包括经过良好优化的功率模块的可获得性,还有设计高可靠门级驱动的学习曲线。智能功率模块(IPM)通过提供高度集成、即插即用的解决方案,可以加速产品上市并节省工程资源,从而能够有效地应对上述两项挑战。 本文讨论了在电动汽车应用的功率转换器设计中选择CISSOID三相全桥1200V SiC M
[电源管理]
智能功率<font color='red'>模块</font>加速迈向基于SiC的电动汽车
基于FPGA核心的数字化仪模块设计
PXI总线是NI公司在计算机外设总线PCI的基础上实现的新一代仪器总线,已经成为业界开放式总线的标准,基于PXI总线的数字化仪模块是现代测 试系统中重要的一种数据记录与处理设备。设计一个双通道12 bit/250 MHz采样频率的高速数字化仪模块,以高性能FPGA器件为核心,实现对高速A/D的控制以及高速数据处理和存储,解决了长时间高速记录信号的测试难题。    1 系统工作原理   数字化仪模块主要由前端信号调理通路、模数转换电路、数据存储单元、数据采集控制电路、PXI接口电路等部分组成,其原理框图如图l所示。      高速模拟信号首先经过信号调理通路进行放大、衰减等处理,将幅度调整到A/D转换器允许输
[模拟电子]
基于FPGA核心的数字化仪<font color='red'>模块</font>设计
DS18B20在空调检测系统温度采集模块中的应用
在空调生产过程中,为确保空调产品的质量,空调制造商在产品出厂前都必须对空调进行加热带、制热、制冷等环节的测试,通过标准机的电压、功率、输入管温、输出管温、回气温度、排气温度等参数判断空调是否合格,其中温度参数检测是整个空调检测系统的重要部分。 在传统的空调检测系统中,温度采集模块多以热电阻、热电偶为温度传感器,温度模拟信号必须经过专门的调理电路转换为数字信号后才能被单片机处理,使用一段时间后,系统检测到的温度值往往不够准确,同时由于温度采集点分布范围广,增加了布线难度,也给系统维护带来不便。 本文采用DS18B20数字温度传感器、AT89S52单片机,设计出适合空调检测现场的温度采集模块,实现现场16个采集点温度数据的同步采集和
[单片机]
DS18B20在空调检测系统温度采集<font color='red'>模块</font>中的应用
基于VME的星载上行数据 数据模块测试平台的设计与实现
摘要:介绍了VME总线的特点及系统结构,给出了设计基于VME总线的星载上行数据处理模块测试平台的一些关键技术,并提出了一种围绕FPGA芯片设计VME总线从设备接口的技术。 关键词:VME总线 测试平台 PSK FPGA VME(Versa Module Eurocard)总线是一种计算机总线结构。Versa总线由Motorola公司专为其MC6800处理器开发设计的,VME总线是在Versa总线的基础上发展起来的,主要采用了Versa总线的电气标准及欧式卡(Eurocard)的机械标准。VME总线在工业领域得到了广泛应用,航空、航天和军事等领域也大量采用VME总线。 在以VME为背板总线的系统中,很多功能模块作为VME从设
[传感技术]
小编推荐:一款基于电源模块的均流设计及实现
在很多大电流输出的场合,为了提高系统的可靠性,比较常用的一个方法就是采用热备份——多个 电源模块 并联使用。每个电源模块还具备在线插拔的功能。以便于拆卸和维修、维护。 但是我们知道,每个电源模块的内阻是略有不同的,而输出电压也不可能做到完全一致。故而,稳压输出的电压源是不可以直接并联的,或者是即便并联了,每个模块的输出功率各不相同。有可能会出现闲的闲死,忙的忙死的现象——有的模块在超负荷工作,损耗发热都比较厉害,寿命会降低。而有的工作于轻载,甚至都没有进入较好的工作状态(例如移相全桥,轻载时不容易实现软开关),也对电源健康不利。 这时候,我们需要一种手段,让各模块输出功率基本相同。这种把负载平均分配到各模块的手段,我们称之为 均流
[电源管理]
小编推荐:一款基于电源<font color='red'>模块</font>的均流设计及实现
高通蓝牙QCC3系列模块芯片性能参考选型
高通蓝牙QCC3系列模块芯片性能参考选型 模块型号 H321 QCC3021 H331 QCC3031 H320 QCC3020 H324/Y324 QCC3024 H334/Y334 QCC3034 H340 QCC3040 H344 QCC3044 H350 QCC3050 H356 QCC3056 H371 QCC3071 蓝牙版本 5.1 5.1 5.1 5.1 5.1 5.2 5.2 5.3 5.3 5.3 DSP 1*120Mhz 1*120Mhz 1*120Mhz 1*120Mhz 1*120Mhz 1*120Mhz 1*120Mhz 2*120Mhz 2*120Mhz 1*240Mhz Mono/st
[嵌入式]
小广播
最新模拟电子文章
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved