从几款实用电路入手,解读实现复杂电子系统低电磁干扰的几种应用场景

发布者:HeavenlyWonder最新更新时间:2020-09-09 关键字:EMI  模拟IC  稳压器 手机看文章 扫描二维码
随时随地手机看文章

对于汽车、通信以及测试与测量设备等广大系统制造商来说,技术的发展带来了终端功能与性能的大幅提升,其根源在于系统中配备的功能愈加丰富的电子模块。然而功能越丰富,电路就越复杂,不论是新款汽车中装载的中控集成式多媒体系统、高性能音响系统,还是体积越来越小的 5G 通信设备(手机及基站),抑或是要求精度越来越高的仪器仪表,对于高精度数字和模拟 IC 的要求都愈发严苛,特别是在供电需求方面。


作为任何电子系统设计不可或缺的部分,电源性能的高低对于系统性能的高低有着至关重要的影响。而电磁干扰(EMI)特性则是其中最关键的性能之一。这种干扰通过电磁感应、静电耦合或传导来影响电路,对于电源性能的任何要求(功率密度增加、开关频率更高以及电流更大)都会扩大 EMI 的影响。因此,如果在设计初期不加以考虑,将会严重影响产品的性能及上市时间。针对此种现状,ADI 推出了专为低 EMI 场景设计的 Silent Switcher 系列架构稳压器解决方案。

 

Silent Switcher 架构这样消除 EMI 干扰


最常用的 EMI 管制标准是 CISPR 25 Class 5,它详细说明了 150 kHz 至 1 GHz 频率下的可接受限值。要在达到该要求,通常会涉及复杂的设计和测试程序,包括在解决方案的尺寸、总效率、可靠性和复杂性等众多方面进行权衡。传统方法通过减慢开关边沿或降低开关频率来控制 EMI,由此带来的弊端是效率降低,最小开关时间增加,解决方案尺寸增大。替代缓解方案包含庞大复杂的 EMI 滤波器、缓冲器或金属屏蔽,这会显著增加电路板空间、元件和装配方面的成本,并使热管理和测试复杂化。

 

Silent Switcher 降压型稳压器设计在高开关频率(>2 MHz)下提供高效率、超低电磁干扰辐射,从而可实现非常紧凑且低噪声的降压解决方案。该系列采用了特殊的设计和封装技术:在设计上,通过将热回路分成极性相反的两个回路,形成可以相互抵消的局部磁场;在封装上,通过倒装硅芯片并添加铜柱来缩短内部 FET 到封装引脚和输入电容的距离,以缩小热回路的范围。利用上述技术,Silent Switcher 在 2 MHz 下能够实现>92%的效率,同时可以轻松符合 CISPR 25 5 类峰值 EMI 限制。

 

Silent Switcher 稳压器中的磁场抵消

 

新一代的 Silent Switcher 2 技术的内部结构采用铜柱代替键合线,增加了内部旁路电容,以及集成式衬底接地平面以进一步提高 EMI,使其对 PCB 布局不敏感,从而可简化设计并降低性能风险。

 

典型的 Silent Switcher 应用原理图及其在 PCB 上的外观

 

采用 Silent Switcher 架构的几大典型应用场景


1  应对车载高电流应用

 

汽车应用要求系统不产生可能干扰其他汽车系统正常运行的电磁噪声。例如,开关电源是高效率电源转换器,但会产生不受欢迎的可能影响其他系统的高频信号。开关稳压器噪声发生在开关频率及其谐波处。受此类噪声影响的传感器和其他仪器可能会运行不正常,引起可闻噪声或严重的系统故障。

 

下图展示了一种低 IQ(静态电流)、低噪声解决方案,支持汽车 I/O 和外设的高电流应用。前端的 LT8672 保护电路免受电池反向故障和高频交流纹波的影响,正向压降只有几十 mV。LT8650S 的开关频率为 400 kHz,输入范围为 3 V 至 40 V,两个通道并联工作时输出能力为 8 A。两个去耦电容靠近 LT8650S 的输入引脚放置。由于采用 Silent Switcher 2 技术,即使没有安装 EMI 滤波器,高频 EMI 性能也十分出色。该系统符合 CISPR 25 Class 5 峰值和均值的限值要求,而且裕量很大。

 

LT8672 和 LT8650S 配置用于高输出电

 

下图显示了在 30 MHz 至 1 GHz 范围内的垂直极化的辐射 EMI 均值测试结果。完整解决方案具有原理图简单、总元件数非常少、尺寸紧凑等特点,而且 EMI 性能不受电路板布局变化的影响。

 

LT8672 和 LT8650S EMI 性能:30 MHz 至 1 GHz

 

2  应对宽调光比 LED 照明应用

 

LED 照明的许多应用都需要宽调光比。以汽车为例,汽车平视显示器、信息娱乐系统和仪表盘照明中使用的 LED 背光灯必须具备足够的亮度,以便与在白天不断涌入车内的直射阳光相抗衡,而且还能把亮度降低几个数量级,以避免在夜间使驾驶者出现瞬间致盲。这种极端 LED 调光要求在不增加昂贵降噪组件和复杂性的情况下会难以符合 CISPR EMI 标准。

 

LT3932 通过纳入许多旨在最大限度降低 EMI 的内置功能,使得可同时实现高调光比和低 EMI:

 

借助其用于低 EMI 热环路的 Silent Switcher® 架构最大限度降低 EMI。


内置的扩展频谱频率调制 (SSFM) 功能电路有助降低传导和辐射 EMI。


LT3932 的转换速率是受控的,以在保持低噪声性能的同时优化效率。
 


2MHz 汽车 LED 驱动器具有低 EMI 和在内部产生的 PWM 调光以及整个输入范围内的 90% 峰值效率 (未采用 EMI 滤波器时效率为 ~91%)

 

集成了 36V、2A 开关的 LT3932 同步降压型 LED 驱动器将其高效率集成化电源开关内置在一个小外形 4mm x 5mm QFN 封装中,并能以高达 2MHz 开关频率运行,适用于紧凑的高带宽设计。凭借用于处理开路和短路 LED 的内置故障保护功能,以及旨在帮助降低 EMI 的扩展频谱频率调制,LT3932 可满足汽车和工业 LED 照明应用的苛刻要求。

 

LT3932 电路通过了 CISPR 25 Class 5 辐射平均 EMI 测试

 

3  应对高精度测试测量应用

 

为了确保高精度,精密测试和测量系统需要具有低纹波和辐射噪声的电源解决方案,从而不会降低高分辨率转换器信号链的性能。在这些测试和测量应用中,生成双极和 / 或隔离系统电源给系统设计人员带来了电路板面积、开关纹波、EMI 和效率方面的挑战。

 

许多精密测试和测量仪器(如源表或电源)需要进行多象限操作,以获取并测量正负信号。这就需要从单个具有低噪声的正电源输入有效地生成正负电源。使用 Silent Switcher、μModule 稳压器 LTM8074 提高降至更低电压的高效率解决方案如下图所示。

 

在低 EMI 的情况下将电压降至更低电压轨的电源解决方案

 

LTM8074 是采用小型 4 mm × 4 mm 尺寸 BGA 封装的 Silent Switcher、µModule 降压稳压器,能够以低辐射噪声提供高达 1.2 A 电流。此µModule 器件效率高且具有极低的辐射噪声,因此是为噪声敏感精密信号链供电的绝佳选择。根据连接到放大器、DAC 或 ADC 等由电源供电元件的 PSRR,也许可以从 Silent Switcher 输出端直接为其供电,无需 LDO 稳压器进一步过滤电源纹波,而传统开关需要这样做。1.2A 的高输出电流也意味着在需要的情况下,它可用于为 FPGA 等系统中的数字硬件供电。LTM8074 的小尺寸和高集成度使其非常适合空间受限应用,同时简化并加速开关稳压器电源的设计和布局。

 

总结


电子系统当前和未来都在不断发展普及,可以预见,对低 EMI 的要求注定会越来越严苛。基于此,ADI 将会不断地发展 Silent Switcher 架构,不断地提供越来越多的解决方案,以帮助系统设计人员更加从容应对现在、以及将来的各种挑战。


关键字:EMI  模拟IC  稳压器 引用地址:从几款实用电路入手,解读实现复杂电子系统低电磁干扰的几种应用场景

上一篇:2020,美国自动驾驶界的“蓝皮书论坛”有哪些干货?
下一篇:汽车电气化的八大难点,TI有答案

推荐阅读最新更新时间:2024-10-30 10:19

Intersil推出业内首款I2C控制型升压-降压稳压器
灵活、紧凑型设计的器件通过支持高于或低于输出电压的输入电压来帮助简化设计 美国 加州、MILPITAS --- 2011 年 8 月 24 日— Intersil公司(纳斯达克全球交易代码:ISIL)今天推出全球首款I2C控制型升压-降压稳压器--- ISL9112,为变化的输入电压提供稳定的输出电压带来了高度灵活的解决方案。ISL9112是专为需要I2C可编程应用而设计的一款紧凑、高效的2.5MHz、1.2A升压-降压稳压器,并采用了Intersil独有的H桥升压-降压架构。I2C接口编程可使输出电压在两个值之间瞬间或者按照一定斜率变换。 ISL9112可以将低于或高于输出电压的输入电压进行调节,自动的工作在升压或者降压模式
[电源管理]
节能摩托车整流稳压器电路
  本装置电路如图所示。磁电机输出的交流电压经二极管D1~D6整流后变成脉动直流电压分两路输出。一路由Q1、Q2、Q3、R1、R7、DW1,以及C2组成的典型晶体管串联稳压电路稳压后输出16V电压,经D8给蓄电池充电;另一路经D7隔离后由C1滤波、IC1稳压得到12V直流稳定电压对运算放大器IC2供电,并且经电阻R6接至IC2的②脚作基准电压,蓄电池的电压经R4、R5分压后送至IC2的③脚作为比较电压。当蓄电池的电压低于14。4V时,加至IC2③脚的比较电压比②脚的12V基准电压低,运算放大器输出低电平,Q4截止,Q1~Q3正常工作输出16V电压。当蓄电池的电压高于14。4V时,IC2的③脚比较电压高于②脚基准电压,IC2输出高电
[电源管理]
节能摩托车整流<font color='red'>稳压器</font>电路
台系模拟IC攻车用 LED车灯市场摆第一
面对全球车用芯片市场庞大且稳定成长的商机,台系模拟IC供应商亦是蠢蠢欲动,有心往LED车灯、电动车、ADAS系统等电源管理IC市场探索,其中,聚积、致新都已推出自家LED车灯驱动IC解决方案,也与台系LED模组厂配合出货给后装通路业者,甚至品牌车厂。 至于电动车应用领域,在大陆品牌车厂皆有意自创电动引擎系统,系统与机构设计都自己来的情形下,也让杰发、致新壮胆,前往大陆市场洽谈规格,有意开发客制化模拟IC解决方案来抢市。 不过,面对车用芯片客户向来缓慢且漫长的产品认证与检视过程下,台系模拟IC供应商并不认为短期内,车用相关芯片产品线业绩贡献度可以明显成长。 台系模拟IC供应商指出,目前全球车用模拟IC市场
[汽车电子]
使用可变电阻和温度查找表补偿稳压器输出
  概述   稳压器为后续电路提供连续稳定的电压。有些应用可接受相对较大的电压波动,而有些应用则对电压波动要求非常苛刻,这些精密电路需要电压保持恒定。本文将比对标准配置的稳压器和配以DS1859双温控电阻后的同一款稳压器的测试数据。DS1859用其中一路可变电阻和温控查找表进行温度补偿,从测试结果可以清楚地看出利用DS1859温度索引查找表对系统指标的改善。更简单的芯片,譬如DS1847双温控非易失可变电阻同样带有温度索引查找表,效果一样卓越。另外,DS1859和DS1847能够在无需微处理器的条件下提供闭环控制。   非补偿稳压器   传统的稳压电路包括调整元件、反馈电阻分压器、滤波器和在瞬态开关负载条件下用作负载调
[电源管理]
使用可变电阻和温度查找表补偿<font color='red'>稳压器</font>输出
频谱仪与EMI接收机测量值解析
频谱仪默认单位dBm,是功率电平值;EMI接收机默认单位dBμV,是电压电平。为什么使用不同的测量单位?除了单位不同,这两种仪器对同一个信号的测量值如何换算,如果在仪器上设置成一致的单位,读数是否能够一致?产生这些疑问的原因在哪里? 频谱仪与接收机测量值解析 功率谱指的是信号在每个频率分量上的功率,频谱其实是一个幅度谱,是信号在各个分量上的电压幅度,所以功率就是电压的平方再除以电阻值。 频谱仪的 频谱 实际是 功率谱 ,默认使用功率单位dBm;根据各种EMC标准,要求EMI接收机测量每个频率点的电压值,默认使用电压单位dBμV。 频谱仪和EMI接收机都采用超外差式架构,也就是输入信号经过衰减/放大/混频/滤波/检波/数字处
[测试测量]
全新数字世界中模拟IC的ABC
   我们生活在这个世界,依靠视觉、听觉、感觉、嗅觉等感官功能感知一切,而自然界还有光、音、温度、压力等等现象,这一切都是模拟的。而随着电子技术的进步,带来了一个全新的数字世界。我们感知的是模拟信号,电子产品处理的是数字信号,一个完整的信号链,就是来来回回的在数/模之间转换。任何一个信号链系统,都需要传感器来探测来自模拟世界的电压、电流、温度、压力等信号。这些信号被送到放大器中进行放大,然后通过ADC把模拟信号转化为数字信号,经过处理器、DSP或FPGA信号处理后,再经由DAC还原为模拟信号(图1)。在模拟IC中,除了少量的混合信号(约占14%)处理,其余都是标准线性模拟IC。包括电源管理芯片、放大器、数据转换器和接口电路。 图1
[模拟电子]
LDO线性稳压器拓扑结构及分类
LDO线性稳压器通常被设计工程师作为辅助措施,并且经常被选用于产品开发的后期阶段。设计工程师比较关注的是如何使复杂的基频(BB) 或射频( RF )ASIC 发挥作用,而不是其所选线性稳压器的功率/性能。   线性稳压器的选择依据通常性能列表中的主要规格,而不是位于数据表封面以内的非常关键的核心和性能参数。规格经常很容易令人误解 - 封面上所列的规格只代表主要参数,但如果不与其他连接参数相结合时,便失去了价值。例如,接地电流是这些参数中的一个。出现这种情形的原因是,线性稳压器市场的竞争性质让器件制造商认识到, 需要让时间有限的工程师们更加关注自己的器件。此外,在信息提供方式方面,也没有真正的标准化。不同的数值范围、温度和负载只会使
[电源管理]
LDO线性<font color='red'>稳压器</font>拓扑结构及分类
设计EMC兼容的汽车开关稳压器
汽车本身不断变化,驱动汽车的电子装置也是如此。其中最显著的莫过于插电式电动汽车(PEV),它们采用300V至400V的锂离子电池和三相推进马达取代取代燃气罐和内燃机。精密的电池组电量监控、再生制动系统及复杂的传输控制可将电池使用时间优化,使得电池需要充电的频率减少。此外,现今的电动汽车或其它种类的汽车都具有许多可提升性能、安全、便利性及舒适感的电子模块。许多中档车均配备先进的全球定位系统(GPS)、集成DVD播放器及高性能音响系统。 伴随这些先进设备而来的,是对更高处理速度的需求。因此,现今的汽车整合了高性能微处理器及DSP,使得核心电压下降至1V,并且使电流上升5A。使介于6V至40V之间的汽车电池产生如此的电压及电流需要面临许
[嵌入式]
小广播
最新汽车电子文章
换一换 更多 相关热搜器件
随便看看

 
EEWorld订阅号

 
EEWorld服务号

 
汽车开发圈

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved