设计EMC兼容的汽车开关稳压器

发布者:会飞的笨鱼最新更新时间:2012-12-08 来源: 21IC 关键字:EMC兼容  汽车开关  稳压器 手机看文章 扫描二维码
随时随地手机看文章
汽车本身不断变化,驱动汽车的电子装置也是如此。其中最显著的莫过于插电式电动汽车(PEV),它们采用300V至400V的锂离子电池和三相推进马达取代取代燃气罐和内燃机。精密的电池组电量监控、再生制动系统及复杂的传输控制可将电池使用时间优化,使得电池需要充电的频率减少。此外,现今的电动汽车或其它种类的汽车都具有许多可提升性能、安全、便利性及舒适感的电子模块。许多中档车均配备先进的全球定位系统(GPS)、集成DVD播放器及高性能音响系统。

伴随这些先进设备而来的,是对更高处理速度的需求。因此,现今的汽车整合了高性能微处理器及DSP,使得核心电压下降至1V,并且使电流上升5A。使介于6V至40V之间的汽车电池产生如此的电压及电流需要面临许多难题,其中一项是达到电磁兼容性测试(EMC)的严格标准。线性稳压器曾经是将汽车电池电压转换为调节的电源电压所使用的主要方法,但现在已经不合时宜。更准确地说,线性稳压器使得输出电压降低而导致负载电流增加。开关稳压器则愈来愈受到广泛使用,随之而来的是对于电磁波干扰(EMI)无线射频的忧虑,以及对于安全性系统的重视。

本文将以没有复杂数学运算的直觉方式,探讨成功实现开关稳压器的基本因素,主要包括:斜率(slew rate)控制、滤波器设计、元件选用、配置、噪声扩散及屏蔽。

用简单方法实现开关电源EMC

本文的目的在于不需要完全了解复杂的EMI,即可尝试设计EMI兼容的开关稳压器。事实上,与EMI有关的所有问题都来源于未完全达到开关稳压器内电压与电流变化的速率,以及与电路板信号线上或元件内寄生电路元件的互动方式。以通过额定14V且以5A产生5V电压的汽车电池产生动力的200kHz降压型开关稳压器为例,若要达到可观的效率,开关节点的电压斜率应该只占导通时间的一小段,例如1/12以下。连续导电模式(CCM)下运作的降压转换器导通时间为D/fsw,其中D是负载周期或脉宽调制(PWM)信号开启时间百分比与整段时间的比值(ton及toff),而fsw是转换器的开关频率。

对于CCM中运作的降压转换器,电感电流一直是非零的正电流。在这种情况下,负载周期为D=Vout/Vin,在本例中为38%(5V/14V)。使用200kHz的开关频率时,我们很快计算出导通时间为1.8μs。为支持此频率,控制开关的上升/下降时间必须小于90纳秒。这使得我们注意到第一个减少噪声的方法,也就是斜率控制。您可能还无法理解,但是此时我们非常了解与PWM切换节点有关的谐波,也就是开关稳压器的控制波形。如果将此波形以图1(a)中所示的梯形表示,波形的谐波便能够以图1(b)中的内容表示,这表明了EMI背后的驱动因素。这一傅里叶包络定义了可通过傅里叶分析或计算梯形波形导通时间及上升时间取得的谐波振幅。

观察频域时,可看出相等上升和下降时间的梯形波形是由不同的谐波信号所组成,这些信号存在于周期信号基本频率的整数倍数。值得注意的是,各谐波的能量会在1/(π×τ)的第一个转折点(导通时间)减至20dB/dec,并且在1/(π×tr)的第二个转折点减至40dB/dec。因此,限制开关节点波形的斜率会对减少发射量具有重大影响。通过这项探讨,应该能够清楚显示降低运作频率也有利于减少发射量。

AM射频频段考量

汽车EMI规范的其中一个难点与AM频段有关。该频段从500kHz开始,一直持续到2MHz,对于开关稳压器而言非常适合。由于梯形波形的最高能量元件是基本元件(假设没有任何电路板谐振),因此可在AM频段上下运作。

负载周期重要吗?

另一项重要因素是,如果负载周期刚好是50%,复杂梯形切换波形的所有能量会以奇次谐波(1、3、5、7……)呈现。因此,以50%负载周期运作是最坏的情况。在50%上下的负载周期,即使出现谐波,也会发生自然的EMI扩散。

EMI及EMC标准

您可以将EMI视为不适宜的能量,而这个能量不需要太多就有可能违反发射标准。事实上,EMI是相当低的能量效应。例如,在1MHz的状况下,只要20nW的EMI便会违反FCC对于传导发射的规范。传导发射是以频谱分析仪监测输入来源高频率元件而测得。线路阻抗稳定网路(LISN)可作为开关稳压器的低阻抗,以及频谱分析仪线路噪声的高通滤波器。因此,开关稳压器的输入是下一个需要注意之处。 [page]

输入滤波器的考量

造成汽车出现EMI的其中一个主要因素是开关稳压器在电源排线上传入AC电流。这些变化的电流本身具有辐射发射及传导发射的各种波形。例如,在非隔离式升压转换器中,图2(a)所示的输入电容(C2)及升压电感(L1)形成隔离线路发射的单向EMI滤波器。不过,输入电流具有该波形傅里叶扩展的AC三角波形,如图2(b)的绿色信号线所示。

只要加入L2及C2,波形便会变成正弦曲线,而能量会重新调整为相当低的高频率峰值。不过,如果不能正确设计输入滤波器,则会将噪声放大而使得控制回路不稳定。因此,了解滤波器设计的概念,对于优化滤波器回波及成本相当重要。使用SPICE的AC分析是有效了解滤波器行为的工具。

不论是设计降压或升压电源,差动模式滤波器或双向电容输入滤波器都相当实用,这些能够避免EMI噪声进入线路以及辐射和/或传导噪声。需要注意的是,与滤波器元件相关的跨绕组终端电容及电容ESR等寄生元件会明显影响谐波的衰减,因此应该谨慎使用。

选用正确的元件

元件选择是设计EMI兼容开关稳压器的关键部分。例如,屏蔽的电感有助于缩小会产生辐射且耦合成为互感及高阻抗电路(例如PWM控制器的输入误差放大器)的漏磁场。

具有软反向或低反向恢复特性的二极管,能够将从导通状态变成截止状态的二极管相关的大浪涌电流降至最低。这些峰值电流会与寄生电容产生作用,而在超出100MHz的切换节点造成振荡,并且对EMC试验造成不良影响。虽然不在本文的讨论范围内,但还是需要说明的是:不正确选用开关稳压器的回路补偿元件,会使得EMI加剧。如果未正确补偿电源供应,输出纹波及不稳定现象会使噪声增加。经过适当补偿的电源供应是达到良好噪声性能的关键。

谨记电流经过的路径

现在需要处理EMI兼容开关稳压器最容易控制的必需层面,也就是电路信号线路径及元件位置。元件位置会在很大程度上影响电路信号线路径。前文曾经说过EMI是不适宜的能量,而且变化的电流及电压会通过寄生电容、互感或空气耦合到敏感电路(例如高阻抗)。因此,对于将来源的发射量降至最低、元件位置及电流路径具有重要的效用。

在一个电源的正确配置中,必须将大电流导体的回路部分缩减至最小。这样做能够将作为天线源和发射能量的电感降至最低。其中一个层面是有效放置元件及选用去耦电容。图3显示同步降压转换器的输出功率级与滤波器。C3将功率级去耦合,以便在Q2启动时提供低阻抗源。为了将辐射发射量降至最低,必须如图所示连接C3,其中电容的固有阻抗、电路信号线及通过电感的互连均缩减至最小。另外,也需要具有诸如X7R等高自振频率的高品质电容电介质。

屏蔽

本文将说明的最后几项技术是噪声屏蔽及噪声扩散,这些可在运用前文讨论的技术之后用来提升噪声容限。如果未达到EMC标准或噪声容限不足,则需要外部屏蔽来转移辐射电场发射量,以免传输到EMC接收器天线。

散热器或磁性核心等表面出现开关电压时,会产生电场。通常通过导电机壳即可屏蔽电场,其中的导电材料可将电场转换为电流,以隔离电场。当然,其中也必须有该电流的路径(一般是接地)。但是,该电流造成的整个传导噪声能量需要用滤波器加以解决。外部磁场屏蔽更具挑战性(成本高),而且在较高频率时的效果不佳。因此,应该谨慎设计相关磁性元件及电路板回路部分。

采用扩散频谱

最后,本文将探讨另一项越来越受到广泛使用的技术,能够将峰值谐波能量散布于较大的频带,以有效降低该能量。该技术被称为展频频率抖动(SSFD),能够通过谐波峰值的降低将噪声信号从窄频变成宽频,以改变噪声频谱。其中必须了解能量频谱的变化,而整个能量则维持不变。最终的结果是噪声水平一般会增加,从而损害高保真系统。图4显示发生的谐波扩散及峰值降低。一般降低的幅度为5至10dB,后续的谐波会增加峰值降低的幅度。

本文小结

您可以花很长的时间了解EMI的复杂度,但是设计EMI兼容的开关稳压器只需要了解应用电路及少数基本电路设计属性及波形分析。不论是设计汽车的开关稳压器,还是设计不使用电池的开关稳压器或复杂的PEV电池充电器,设计EMI兼容的开关稳压器都需要了解Maxwell方程式的概念。幸好对于我们大多数人而言,其中并未涉及偏微分方程式,而只需要注意快速改变电压/电流时出现的磁场及电场,并了解本文中所述的技术即可。
关键字:EMC兼容  汽车开关  稳压器 引用地址:设计EMC兼容的汽车开关稳压器

上一篇:无钥匙进入也安全 详细解析汽车智能钥匙
下一篇:汽车照明应用典型LED驱动器方案探讨

推荐阅读最新更新时间:2024-05-02 22:28

双通道LDO 单片式降压型稳压器—LT369 4
      LT ® 369 4/ LT369 4-1 是单片式、电流模式 DC/DC 转换器,具有双通道、低压差稳压控制器。开关转换器是一个能够在其输出端上产生高达 2.6A 电流的降压型转换器。每个稳压器具有独立的跟踪 / 软起动电路,因而简化了电源排序以及与微控制器和 DSP 的连接。   开关频率利用单个电阻器来设定,可调范围为 250kHz 至 2.5MHz。这种高开关频率允许使用小的电感器和陶瓷电容器,从而造就了非常小巧的三通道输出解决方案。恒定开关频率与低阻抗陶瓷电容器相组合,产生了低且可预知的输出纹波。保护电路负责检测电源开关和外部肖特基箝位二极管中的电流,以避免 LT369 4 遭受短路情况的损坏。频率折返和
[电源管理]
双通道LDO 单片式降压型<font color='red'>稳压器</font>—LT369 4
DSP系统中延迟电池寿命关键--DC/DC稳压器
  长期以来,MP3播放器、个人媒体播放器、数码相机以及其他便携式消费类应用的设计人员面临的一项挑战是实现产品的高性能和低功耗。这些电池供电系统通常都使用嵌入式数字信号处理器( DSP ),当系统处理多媒体应用任务时, DSP 能达到最大处理能力,而当系统处于睡眠模式时, DSP 具有最小的功耗。电池寿命在手持式产品中是非常重要的指标,产品成功与否与供电系统的效率直接相关。   此类系统中的一个关键部件是降压式DC-DC开关 稳压器 ,它能够高效地从较高电压获得较低的供电电压,如从4.5 V获得1V的供电电压。作为 稳压器 ,其必须保持恒定的电压,而且能够对输入电压的变化以及负载电流的变化迅速做出响应。本文将讨论的架
[电源管理]
DSP系统中延迟电池寿命关键--DC/DC<font color='red'>稳压器</font>
凌力尔特推出6A 4MHz同步降压型稳压器LTC3616
凌力尔特公司 (Linear Technology Corporation) 推出高效率、4MHz 同步降压型稳压器 LTC3616,该器件采用恒定频率、电流模式架构。低电阻内部开关允许采用 3mm x 5mm QFN 封装的 LTC3616 提供高达 6A 的连续输出电流,而且其低压差工作允许范围从 0.6V 直到仅比 VIN 低数 mV 的输出电压。LTC3616 采用 2.25V 至 5.5V 的输出电压工作,从而非常适用于单节锂离子电池应用以及 3.3V 或 5V 中间总线系统。其开关频率范围为 300kHz 至 4MHz,是用户可编程的,从而可使用纤巧、低成本电容器和电感器。 LTC3616 采用 RDS(
[电源管理]
凌力尔特推出6A 4MHz同步降压型<font color='red'>稳压器</font>LTC3616
紧凑的四输出降压型稳压器解决方案加速采用数字内窥镜
   1  内窥镜 发展历史   大多数历史学家都认为,Bozzini 的 Lichleiter 是第一个与我们今天所知的内窥镜相似的设备。该设备于 19 世纪初发明,它很不灵活,用倾斜的镜子将图像投射到医生眼中,只用一根蜡烛照明,图像质量很差。之后大约在 20 世纪,照明方法有了改进,几位发明家发明了一种方法,用摄像机捕获内窥镜静止图像。到了 20 世纪 50 年代,日本的先驱者 Mori 和 Yamadori 用内窥镜在世界上首次记录了运动影像,记录的是生产过程。那个时代的摄影和运动影像记录技术的缺点是,图像不能共享,不能实时处理。我们不断沿着这些先驱们开拓的道路前进。现在,现代数字成像技术支持这些功能,而且分辨率比以往任何
[电源管理]
紧凑的四输出降压型<font color='red'>稳压器</font>解决方案加速采用数字内窥镜
新LDO线性稳压器【安森美半导体】
    2011年3月17日 – 安森美半导体(ON Semiconductor)推出3种新系列的宽输入电压、低压降(LDO)线性稳压器。公司广受欢迎的NCP58x系列也增加新器件,进一步增强了公司在此领域的强劲实力。     这些互补金属氧化物半导体(CMOS)器件使用最新技术,提供降低能耗、增强噪声性能及宽范围小外形封装选择等优势,应用涵盖从娱乐系统到小型便携锂离子钮扣电池供电设备等宽广范围的终端产品。         这些新系列器件中的第一个系列是50毫安(mA)及150 mA的NCP4640和NCP4641产品。这些器件拥有4伏(V)到36 V的宽输入电压范围及50 V的最大输入电压容限。9微安(?A)的低静
[电源管理]
新LDO线性<font color='red'>稳压器</font>【安森美半导体】
开关稳压器为高速ADC供电
对于挑选高速数据转换器的设计者而言,功耗是最重要的系统设计参数。无论是需要较长电池寿命的便携设计,还是消耗热能较少的小型产品,功耗都很关键。系统设计者过去都采用低噪声的线性稳压器为数据转换器供电,如低压差稳压器,而不是开关稳压器,原因是他们担心开关噪声会进入转换器的输出频谱,从而大大降低AC性能。 不过,较新一代经过噪声优化的开关稳压器(用于手机)可最大限度地减少与相邻低噪声与功率放大器之间的干扰,从而使应用发生了一种转变。它们能够直接从一个DC/DC转换器为高速数据转换器供电,而不会显著降低AC性能。这一设计可立即将功率效率提高20%~25%。 现代高速转换器可较前代减少大约50%的功耗,部分原因是将电源电压从3.3V降
[电源管理]
用<font color='red'>开关</font><font color='red'>稳压器</font>为高速ADC供电
IR 扩充SupIRBuck在线设计工具
全球功率半导体和管理方案领导厂商国际整流器公司 (International Rectifier,简称IR) 今天宣布已为 SupIRBuck 集成式负载点 (POL) 稳压器系列扩充在线设计工具,其中包括使用可提升轻载效率的滞后恒定导通时间 (COT) 控制的全新器件。   http://mypower.irf.com/SupIRBuck 上已提供这款方便易用的互动网络工具,使设计人员可为超过15个SupIRBuck 集成式稳压器进行快速选型、电热模拟和优化设计。扩充的产品线包含高压 (27 V) 器件、最高15A 的额定电流,以及采用5mm×6mm 和4mm×5mm 封装的稳压器。强化的模拟功能包括使用铝制电解电容器补偿恒定导
[电源管理]
IR 扩充SupIRBuck在线设计工具
TI推出DDR终端稳压器满足低功耗存储器要求
日前,德州仪器(TI)宣布推出一款可满足DDR、DDR2、DDR3与DDR4等各种低功耗存储器终端电源管理要求的汲极/源极双数据速率(DDR)终端稳压器TPS51200。该简便易用的新型稳压器的陶瓷输出电容仅为 20 μF,比同类竞争解决方案的电容降低了近80%。这样,设计人员可利用该器件实现更低成本、更小型化的DDR存储器终端解决方案,以满足数字电视、机顶盒、VGA卡、电信、数据通信、笔记本以及台式机电脑等现代大容量存储器电子产品以及日益丰富的消费类电子产品的需求。 高宽带内部跨导,Gm放大器与积分动态电压定位均可支持超快瞬态响应,而且外部输出电容极小。在负载变动幅度为 -1.5A ~+1.5A的典型应用中,输出电
[电源管理]
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved