DSP系统中延迟电池寿命关键--DC/DC稳压器

最新更新时间:2015-03-22来源: 互联网关键字:DSP系统  DC  DC稳压器 手机看文章 扫描二维码
随时随地手机看文章
  长期以来,MP3播放器、个人媒体播放器、数码相机以及其他便携式消费类应用的设计人员面临的一项挑战是实现产品的高性能和低功耗。这些电池供电系统通常都使用嵌入式数字信号处理器(),当系统处理多媒体应用任务时,能达到最大处理能力,而当系统处于睡眠模式时,具有最小的功耗。电池寿命在手持式产品中是非常重要的指标,产品成功与否与供电系统的效率直接相关。

  此类系统中的一个关键部件是降压式DC-DC开关,它能够高效地从较高电压获得较低的供电电压,如从4.5 V获得1V的供电电压。作为,其必须保持恒定的电压,而且能够对输入电压的变化以及负载电流的变化迅速做出响应。本文将讨论的架构具有优良的稳压性能以及高效率和快速响应的优点。

  开关剖析

  图1示出了ADI公司ADP2102的典型应用电路,这是一款低占空比、3 MHz同步整流降压转换器。ADP2102具有固定输出电压和可调输出电压的多种配置。这里将ADP2102连接成固定输出电压配置,由5.5 V的输入电压产生300mA、0.8 V输出电压。接下来给出输出电压可调的应用示例。

 

 

  图1.使用ADP2102由5.5 V输入产生0.8 V输出

  这里将简单地解释该电路的工作原理:将DC输出电压的分压与误差放大器中的内部参考源比较,然后将误差放大器的输出与电流采样放大器的输出比较,以驱动单稳态触发器。单稳态触发器在由VOUT/VIN确定的时间周期内处于暂稳态。单稳态触发器使上面的门控晶体管导通,电感L1中的电流逐渐变大。当单稳态触发器的暂稳态结束时,晶体管截止,电感L1中的电流逐渐变小。在由最小关断时间定时器和最小(“谷值”)电流确定的时间间隔之后,单稳态触发器再次被触发。芯片内的单稳态触发定时器使用输入电压前馈,使得稳态时保持恒定的频率。

  该振荡以不确定的频率(大约为3MHz)持续进行,但是在必要的情况下可以响应线路和负载的瞬态变化而偏离该频率,以便输出电压保持恒定,并且使电感电流的平均值保持在输出负载所需要的电流值。

  上文描述的方法是相对新颖的。多年来,DC-DC变换的主要方法是恒频峰值电流方法,当该方法在降压式DC-DC转换器中实现时,其还被称为后沿调制。有关该方法的详细描述、对其优缺点的评估以及上文描述的恒定导通时间谷值电流模式转换器,请参考其他技术文章。

  ADP2012还具有欠压闭锁功能、软启动功能、过热保护功能和短路保护功能,并且具有±1%的反馈精度。该架构能够使主开关的导通时间低至60 ns或更低。

  图2示出了不同条件下的典型波形。图2a示出了在ILOAD=600mA,电压从VIN=5.5V减小到VOUT=0.8V时的低占空比。如图中所示,在3MHz的开关频率下,可以获得45 ns的最小导通时间。

  图2b示出了负载电流突增300mA时,负载电流和电感电流波形。

  图2c示出了负载电流突减300mA时,负载电流和电感电流波形。

  图2d示出了在占空比为50%时不存在次谐波振荡,而使用峰值电流模式控制时必须在设计时加以考虑。当占空比大于或小于50%时,同样不存在次谐波振荡。

 

 

  图2a. VIN = 5.5 V,VOUT = 0.8 V,最小导通时间=45 ns

 

 

  图2b.突加负载瞬态响应(ILOAD = 300 mA)

 

 

  图2c.突减负载瞬态响应(ILOAD = 300 mA)

 

 

  图2d.占空比= 50%,VIN = 3.3 V,VOUT = 1.8 V,ILOAD = 300 mA

  DSP应用中的动态电压调节

  在使用DSP的便携式应用中,通常由开关转换器提供DSP的内核电压和I/O电压,这需要使用电池供电应用的高效率DC-DC转换器。提供内核电压的稳压器必须能够基于处理器的时钟速度动态改变电压或者按照软件的指令动态改变电压。另外,整体解决方案的小尺寸也同样重要。

  这里描述的是,在电池供电的应用中将Blackfin处理器的内部稳压器更换为外部高效率稳压器,以提高系统供电效率。而且,这里还介绍了用于外部稳压器的控制软件。  动态电源管理 处理器的功耗与工作电压(VCORE)的平方成正比,并且与工作频率(FSW)成正比。因此,降低频率能够使动态功耗线性下降,而降低内核电压可以使动态功耗指数下降。

  在对功耗敏感的应用中,当仅简单地监视系统活动或者等待外部触发信号时,在保持供电电压不变的情况下改变时钟频率,这对降低功耗是非常有用的。然而,在高性能电池供电的应用中,仅改变频率并不能显著节约电能。Blackfin处理器以及其他的具有高级电源管理功能的可以依次改变内核电压和频率,由此可以在任何情况下均实现最优的电池利用。

  A-BF53x系列Blackfin处理器中的动态电压的稳压通常是由内部电压控制器和外部MOSFET实现的。该方法的优点在于,可以将单电压(VDDEXT)施加到DSP子系统,从MOSFET得到的所需的内核电压(VDDINT)。通过内部寄存器可以软件控制内核电压,以便于控制MIPS,并且最终控制能耗,由此实现最优的电池寿命。

  为了完整地实现Blackfin内部稳压方案,需要一个外部MOSFET、肖特基二极管、大电感和多个输出电容器,该解决方案价格相对昂贵,效率却很差,而且占用的PCB板面积是相对较大的,这给系统设计人员带来了很大的矛盾,在集成中需要使用大电感和电容器,不利于消费者所希望的便携式设备尽可能小型化。该集成稳压控制器的效率是相对较低,通常仅为50%~70%,因此该方法不太适用于高性能手持式电池供电应用。

  外部稳压

  通过新型DC-DC开关转换器设计方法,可以将Blackfin集成方法本身的效率提高到90%或更高。而且,在使用外部时可以减小外部元件的尺寸。

  还可以使用多种动态电压调整(DVS)控制方案,包括开关电阻器(其在某些情况中可由DAC实现)和脉宽调制(PWM)(其可以实现与内部方法相同的精度)。不论使用哪种方案,其必须能够通过软件控制改变稳压电平。上述稳压控制方法在内部是集成的,而在外部稳压中必须通过外加器件来实现。

  本文描述了两种使用ADP2102同步DC-DC转换器调节DSP内核电压的方法,当处理器在低时钟速度下运行时,可动态地将内核电压从1.2 V调节到1.0V.

  ADP2102高速同步开关转换器在由2.7V~5.5V的电池电压供电时,可以使内核电压低到0.8 V.其恒定导通时间的电流模式控制以及3MHz开关频率提供了优良的动态响应、非常高的效率和出色的源调整率和负载调整率。较高的开关频率允许系统使用超小型多层电感和陶瓷电容器。ADP2102采用3 mm×3 mm LFCSP封装,节约了空间,仅需要三或四个外部元件。而且ADP2102包括完善的功能,诸如各种安全特征,如欠压闭锁、短路保护和过热保护。

  图3示出了实现DVS的电路。ADSP-BF533 EZ-KIT Lite评估板上的3.3 V电源为降压转换器ADP2102供电,使用外部电阻分压器R1和R2将ADP2102的输出电压设定为1.2 V.DSP的GPIO引脚用于选择所需的内核电压。改变反馈电阻值可以在1.2 V~1.0 V的范围内调节内核电压。通过与R2并联的电阻R3,N沟MOSFET可以修改分压器。相比于R3,IRLML2402的RDSon较小,仅为0.25Ω。3.3 V的GPIO电压用于驱动MOSFET的栅极。为了获得更好的瞬态性能并改善负载调整率,需要加入前馈电容器CFF.

 

 

  图3.使用外部MOSFET和Blackfin PWM控制进行ADP2102的动态电压调整

  对于双电平开关,一般的应用要求是:

  DSP内核电压(VOUT1)= 1.2 V

  DSP内核电压(VOUT2)= 1.0 V

  输入电压= 3.3 V

  输出电流= 300 mA

  使用高阻值的分压电阻可将功率损失降到最低。前馈电容在开关过程中降低栅漏电容的影响。通过使用较小的反馈电阻和较大的前馈电容可以使该暂态过程中引起的过冲或下冲最小,但这是以额外的功耗为代价的。

  图4示出了输出电流IOUT、输出电压VOUT和控制电压VSEL.VSEL为低电平时,输出电压为1.0 V,VSEL为高电平时,输出电压为1.2 V.

 

 

  图4.通过MOSFET调节下面的反馈电阻器  一种较简单的方法可生成用于DVS的两个不同的电压,其使用控制电压VC通过另外的电阻将电流注入到反馈网络中。调节控制电压的占空比可以改变其平均DC电平。因此使用一个控制电压和电阻可以调节输出电压。下面的公式用于计算电阻R2、R3的值以及控制电压幅度电平VC_LOW和VC_HIGH.

 

(1)

 

 

(2)

 

  对于VOUT1 = 1.2 V,VOUT2 = 1.0 V,VFB = 0.8 V,VC_LOW = 3.3 V,VC_HIGH = 0 V,和R1= 49.9 kohm,R2 and R3可以如下计算

 

(3)

 

 

(4)

 

  该方法产生了更加平滑的变换。不同于MOSFET开关方法,能够驱动电阻负载的任何控制电压均可用于该方案,而MOSFET开关方法仅能够用于驱动电容负载的控制信号源。该方法可以适用于任何输出电压组合和输出负载电流。因此,根据需要调整内核电压,便可以降低的功耗。图5示出了使用该电流注入方法的两个输出电压之间的变换。

 

 

  图5.使用控制电压VC进行ADP2102的动态电压调整

 

 

  图6.通过控制电压调节下面的反馈电阻器


关键字:DSP系统  DC  DC稳压器 编辑:探路者 引用地址: DSP系统中延迟电池寿命关键--DC/DC稳压器

上一篇:基于LPC2119的配电控制模块设计
下一篇:全记录:达人自制低成本正弦波逆变电源

推荐阅读最新更新时间:2023-10-12 22:53

变频器对DCS干扰分析处理
1 引言 2008年8月某氟化公司dcs系统(集散控制系统)的催化剂进料调节阀信号间歇出现oop(输出信号线断)报警,同时该调节阀瞬间全开,造成催化剂流量异常波动,严重影响装置的安全稳定运行。 2 故障原因分析及处理 2.1 故障原因分析 由于出现的是oop报警,自然怀疑是信号线断,对该信号线路进行检查,结果线路完好。先判断是其dcs卡件故障,对报警点的dcs卡件进行更换,但故障仍未得到解决。这时,我们意识到一定是存在干扰,从而对该dcs信号造成影响。为减少干扰,对仪表接地进行改造,但故障仍未解决。经过对该dcs信号点排查,最后只剩下由变频器送至dcs的信号线最值得怀疑。为证实干扰源是由变频器产生,我们将该
[电源管理]
凌力尔特推出纤巧16位ADC集成2ppm/ºC基准
凌力尔特公司 (Linear Technology Corporation) 推出一对 16 位增量累加 ADC LTC2460 和 LTC2462,这两款器件都在纤巧 3mm x 3mm DFN 封装中集成了一个精确基准。该集成的基准 (典型值为 2ppm/ºC,最大值为 10ppm/oC) 允许精确测量,并减少了对外部基准的需求,这对空间受限应用而言是一个关键好处。两款 ADC 都保证 16 位无漏码分辨率。就远端传感器电池供电型应用和监视温度或压力的工业传感器而言,这使 LTC2460 和 LTC2462 成为完整的解决方案。 这两款 ADC 靠单一 2.7V 至 5.5V 的电源工作,用来通过一个 SPI
[模拟电子]
凌力尔特推出纤巧16位A<font color='red'>DC</font>集成2ppm/ºC基准
视频监控系统中快速实现ARM和DSP的通信和协同工作
    图1 达芬奇软件结构框图   通过第一部分的介绍,我们知道了TI数字视频软件开发包(DVSDK)中的Codec Engine软件模块可以帮助我们轻松地实现ARM和DSP或协处理器的协同工作,以及Codec Engine软件模块的概要情况,下面我们将告诉你如何走完Codec Engine入门的第一步和第二步。 欢迎转载,本文来自电子发烧友网(http://www.elecfans.com)    2. Codec Engine入门第一步   有些初学者认为Codec Engine文件包结构复杂,很难找到自己想找的文档或例子。其实在Codec Engine文件包的根目下有一个发布说明文档,
[单片机]
视频监控<font color='red'>系统</font>中快速实现ARM和<font color='red'>DSP</font>的通信和协同工作
在分布式电源系统中采用集成DC-DC转换器节省空间
通过使用单个大功率、隔离型DC-DC模块将48V电压转换成一个中等电源,如12V或更低电压,可以获得较好的系统性能。将这一中等电压再转换到系统负载所要求的具体电压。这样的电压转换可以通过非隔离、负载点电源实现,如图1右侧框图所示。对于第二级电源转换,集成开关稳压器是非常理想的选择,因为输入电压(≤ 12V)和输出电流( 10A)相对较低。                         图1. 与电信单板上传统的分布电源架构(左边)相比,集成开关调节器(右边)具有更高效率和可靠性,能够加快设计进程、缩小电路板面积。 采用集成开关调节器的优势 电子行业的很多领域,包括电源电子行业,其共同目标是集成系统元件,以降低总体成本、提高可
[电源管理]
在分布式电源<font color='red'>系统</font>中采用集成<font color='red'>DC</font>-<font color='red'>DC</font>转换器节省空间
基于FPGA的多DSP红外实时图像处理系统
O 引言 随着红外探测技术迅猛的发展,当今红外实时图像处理系统所要处理的数据量越来越大,速度要求也越来越快,利用目前主流的单DSP+ FPGA硬件架构进行较为复杂的图像处理算法运算时,有时就显得有些捉襟见肘了。使用多信号处理板虽可满足复杂处理的要求,但系统成本和设计复杂度会大大增加,对于对空间质量有严格要求的系统也是不可行的,多处理器系统应用的需求越来越迫切。 本文提出了一种新型的基于FPGA和四端口存储器的三DSP图像处理系统。它不同于以往的主从处理器结构,而是3个处理器分别连接四端口存储器的3个端口,处于同等地位,对图像数据并行处理,FPGA占用存储器另一端口进行数据流的控制管理和其他功能实现。这种连接方式增强了系统的
[嵌入式]
基于FPGA的多<font color='red'>DSP</font>红外实时图像处理<font color='red'>系统</font>
DC/DC模块电源的性能特点及几大指标
前言 DC/DC模块电源是一种定压产品,其电路为开环,它的输出电压会随着输入电压及输出负载的变化而变化,主要被当作二次电源使用。DC/DC电源模块不仅适用于数字信号处理电路以及对电压稳定度要求不高的模拟电路,而且还适用于分布式电源供电系统,及使用小功率电源供电的电路(开关电源适配器)。那么DC/DC模块电源的性能特点有哪些呢,采用DC/DC模块电源又有哪些有事呢?对于这一问题,小编通过搜集整理资料,对有关DC/DC模块电源的相关基础知识作了简单的归纳总结。 DC/DC电源模块性能特点(电源适配器工作原理) 输入电压: DC/DC 18V-144VDC、124V-144VDC、60V-144VDC、90V-360V
[电源管理]
大联大友尚集团推出基于ST产品的DC/DC ACF隔离电源供应器方案
大联大友尚集团推出基于ST产品的DC/DC ACF隔离式电源供应器方案 2022年1月18日,致力于亚太地区市场的领先半导体元器件分销商---大联大控股宣布,其旗下友尚推出基于意法半导体(ST)PM8804的DC/DC ACF隔离式电源供应器方案。 图示1-大联大友尚基于ST产品的DC/DC ACF隔离式电源供应器方案的展示板图 随着5G应用的迅速普及和推广,新一代网通服务器、交换机与小型基站的需求呈现高速成长状态,在这种背景下,电源供应器的设计也随之朝向高功率、小型化、轻量化的趋势发展。目前,市面上大多网通POE所使用的DC/DC电源功率约50W左右,不仅体积大且零件繁多,而且其使用的传统Flyback架构效率也
[电源管理]
大联大友尚集团推出基于ST产品的<font color='red'>DC</font>/<font color='red'>DC</font> ACF隔离电源供应器方案
基于Honeywell DCS的锅炉燃烧稳态优化控制
摘要:介绍了采用Homeywell系统构建集散控制系统,完成对锅炉、汽机和电网、热网主要参数的实时监测,并对主要的过程变量实现自动控制的方案。在此基础上对节能影响很大的锅炉燃烧系统建立了稳态参数优化模型,并获得锅炉燃烧系统稳态参数优化模型参数。在这个优化模型结果的指导下,热电厂的能源利用率提高4%左右。 关键词:锅炉 燃烧控制 Honeywell DCS 稳态优化控制 热电厂提供的能源主要是以电能和热能的形式出现的,通常是利用锅炉生成蒸汽,然后将其中一部分提供给汽机发电,提供电力能源,另一部分作为热源直接供给用户。无论最后提供的能源形式是何种方式,锅炉负荷总是变化的。负荷既包含电力负荷也包含热能负苛。近年来,为解决锅炉燃烧过程
[传感技术]
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved