点阵液晶显示器在便携式频率特性测试仪中的应用

发布者:EuphoricMelody最新更新时间:2009-09-11 来源: 电子设计应用关键字:LCD  AVR  频率特性测试仪 手机看文章 扫描二维码
随时随地手机看文章

  引言

  频率特性测试仪又称为扫频仪,或频率响应分析仪,它利用矩形具有内刻度的示波管作为显示器,来直接显示被测电路的幅频特性曲线。但由于示波管的使用,使得整个仪器在外形上显得庞大,笨重,如BT-3GII型的扫频仪重量达到10kg,不方便移动式测量。为此,本设计针对其显示部分,将示波管用LCD代替。适用于便携式仪器仪表中。

  硬件设计

  本设计所选的液晶显示器是深圳天马微电子公司的TM320240 EFG,它是一款内藏SED1335控制器的点阵式图形液晶显示模块。LCD控制器选用的是EPSON公司的SED1335,内部拥有一个160种5×7 点阵字符的字符发生器,能分区管理64K的显示存储器,并同时能管理自定义字符发生器。模块TM320240EFG的对外接口实质上就是控制器 SED1335与MCU的接口。在单片机的选型上,考虑到系统功能与电路的简洁,采用Atmel 公司推出的AVR单片机AT90S8535,内嵌8路10位ADC,可直接输入模拟电压信号。

  AT90S8535与TM320240EFG接口采用间接访问方式进行连接。单片机通过控制SED1335完成对图形液晶模块的控制。所谓间接访问方式,就是把TM320240EFG作为终端接在AT90S8535的某个并行I/O接口上,AT90S8535通过对该I/O接口的操作,间接地实现对 TM320240EFG的控制。间接访问方式的接口电路与时序无关。

  在电路中,AT90S8535使用8位并行PC口作为数据线与模块的数据线DB0~DB7连接,另外还需要一个3位并行接口作为时序控制信号线/RD, /WR和A0。把PB口中的PB0作为写信号接至TM320240 EFG的写控制信号/WR上;PD口中的PD3作为读信号接至TM320240EFG的读控制信号/RD上;PD4作为数据类型选择信号与模块的A0连接。由于这些并行接口在MCU系统中有自己的专用地址,所以TM320240EFG的片选信号 /CS可以不使用,直接接地选通。液晶驱动电源VEE取值为-20V,利用单片DC-DC转换器MC34063从逻辑电源转换生成负电源。电路中LCD电源控制端V0用来调节显示屏灰度,电位器R3作为调节液晶显示对比度使用。

  ADC的0通道输入经过检波后的采样信号,带宽为10KHz ,经RC滤波去除交流分量。5.1V稳压管起保护作用,高于5.1V的输入信号被限幅在5.1V之内。该输入波形的X轴方向扫描频率为50Hz,周期为 20ms,12ms工作期,8ms消隐期。外部中断管脚INT0输入50Hz的方波,作为同步脉冲。MCU的晶振选为6M。

  屏幕规划

  该液晶屏为320×240点阵,将坐标原点(0,0)定在整个液晶屏的左上角,向右为X坐标,向下为Y坐标。为美观起见,四周边框留出空白区域,实际显示曲线的区域为X方向从第24点到264点,共240个点距,30字节;Y方向从第16点到208点,共192个点距, 24字节。为方便观测,在显示区内绘制坐标轴,用虚线等间距地将横向分作10小格,竖向分作8小格。

  在进行图形显示时,起初我们采用的是单层显示方法,但由于要求实时显示,必须考虑屏幕的刷新问题。由于此液晶屏属多点阵,刷新满屏需花费很长一段时间,刷新完后还要在屏幕上重新绘制出坐标轴,增加了MCU的操作负担,而且频繁的满屏刷新还会引起屏幕的闪烁现象发生。因此采取的解决方法为:显示时分作两层显示,第一层为文本属性,第二层为图形属性。将不需刷新的坐标轴、汉字显示在文本层,首地址$0000。将实时动态更新的幅频特性曲线显示在图形层,首地址 $1000,并通过两层的逻辑“或”操作进行合成显示,以达到图文并茂的显示效果。这样,在刷新时,文本层上的坐标轴和汉字可以保持不变,所需刷新的仅为图形层上的曲线。实际测试结果表明,分层显示的设计思路是正确的。

  软件设计

  绘制曲线在软件设计上关键是画点和消点的程序。

  ADC采用单次转换模式,总的转换周期数为14,总的转换时间70~280ms,预分频器的分频因子选为32,故ADC时钟频率为6M/32= 187.5KHz。所以每一次的转换时间是14/187.5K=74.666ms,此ADC转换时间是在6M的晶体振荡频率下最快的采样时间。若选小于 32的分频因子,则总的转换时间太快,将小于70ms,不能实现。考虑到实际需要,ADC转换时间越快越适宜,故不采用64以上分频。

  用ox来记录X方向字节数,初始值为$00,随点的右移从1到30递增。当ox=30时,说明X方向已到达有效显示区的尾部。code记录点在字节中所处位置,画奇数点时code从$80开始右移,画偶数点时code从$40开始右移,每次移动2位,移完一字节后,ox加1。

   ADC能转换的最大量程电压是电路基准电压Vref的值,这里调节的是4V。1V占48个点距。某一时刻,输入信号Z V(Z≤4),则其在屏幕上Y向的位置是208-Z×48。MCU内嵌的ADC为10位精度,采样结果转化成点的高度的计算表达式为:

  208-(AD值)×(4/1024)×48=208-(AD值)×3/16(1)

  考虑到输入信号的扫描时间和MCU的AD转换时间,整个屏幕在X方向要显示240点,只能采取隔列扫描的方法,分两帧画完全屏,第一帧画奇数点,第二帧画偶数点。先在工作期12ms内采样数据,进行120次AD转换,将其转换结果按顺序存入片内SRAM中,所以需要100ms启动ADC一次。同时,把信号的消隐期8ms加以利用,在整个20ms周期内画120个奇数点,20ms/120=166.666ms,我们设定每隔161.333ms画一个点。画点的具体方法为:从SRAM中取出AD值,将每组的AD采样结果用式(1)进行计算,转化成Y方向坐标,得到点的高度值,送入寄存器oy中。由于屏幕上一横行是320个点,即40字节,显示区距离左边框为3字节,可计算出该点的地址,结果存于寄存器r7: r6中,表达式为:

  r7: r6 = oy*40+3+$1000+ox (2)

  接着再确定该点在此字节中的位数,调用绘点程序即可。画完一屏的奇数点后,等待下一个同步脉冲到来,然后,在同样的扫描时间内,用同样的方法绘制出120 个偶数点。这样,全屏显示的时间仅为40ms,人的肉眼观测到的是一条连续的曲线,不会出现隔列的效果。另外,考虑到屏幕的刷新问题,每次画点前,都要在此列先消点。消点和画点的方法类似,程序中用ox1和code1与画点加以区别,这里不再累述。

  程序中用寄存器r25作标志状态寄存器,各标志位说明如下:

  r25(3):两帧画完全屏。   r25(3)=0,第一帧画奇数点;r25(3)=1,第二帧画偶数点;

  r25(4) :在T/C1中断里置位  r25(4)=1,表明显示时间已到,可以进行画点显示;

  r25(5) :在ADC转换结束中断里置位  r25(5) =1,表明ADC转换结束,已采样到数据并存入SRAM中。

  整个程序应用4个中断。20ms同步脉冲上升沿触发外部中断EXT_INT0,在中断服务程序中,清r25(4,5)=0,并使能两定时器T/C0和 T/C1。采用T/C0定时中断,每100us中断一次,在中断服务程序中,启动AD转换。同时采用T/C1输出比较匹配A中断,每161.333 us中断一次,置位画点时间到达的标志。ADC转换结束中断,在中断服务程序中读取采样值AD,置位r25(5)。

  复位时间问题

  在整个设计过程中,程序调试用的是AVR单片机的在线仿真器ICE 200。但将调试好的程序经编译后烧到片子里,液晶屏却不能正常显示了。查找原因,主要是单片机和液晶屏的复位时间相差太大引起的。对于 AT90S8535来说,超过50ns的低电平就会引起系统复位;而LCD的控制器SED1335,复位需要1ms以上的复位电平。所以需在程序的初始化部分,加一定的延时,以使LCD正常工作。回过头来再思考一下在线仿真能通过的原因。仿真器上电和液晶屏上电同步,在调试环境里,下载程序所花时间较长,能够满足LCD的复位时间要求,故在程序运行以后,可使LCD正常显示。

  目前,兼顾功能和价格两方面,大量中、高档仪器仪表已经广泛使用LCD 作为其显示输出设备。本文将点阵式图形液晶显示模块和AVR单片机AT90S8535相结合,使频率特性测试仪的显示输出由原来的示波管改为液晶屏,符合现阶段传统仪器向智能仪器转型的发展趋势,很有市场竞争力。

关键字:LCD  AVR  频率特性测试仪 引用地址:点阵液晶显示器在便携式频率特性测试仪中的应用

上一篇:组态王与单片机多机串口通信的设计
下一篇:赛普拉斯新型全集成TrueTouch触摸屏控制器

推荐阅读最新更新时间:2024-05-02 20:52

OLED手机罩门暂难解 LCD阵营城池保卫战仍艰辛
苹果(Apple)推出首款OLED面板智能手机iPhone X,引发手机厂导入OLED面板热潮,预估2018年智能手机搭载OLED面板比率可望突破3成,然OLED屏幕出现画面残影的烙印(burn-in)问题,以及OLED面板产能最快要到2018年下半才会大举开出,可望让TFT LCD阵营获得短暂的喘息空间,全面强化战力或另找出路,然LCD阵营后续面对主流面板的城池保卫战,仍将相当艰辛。   苹果iPhone X搭载的Super Retina显示器采用OLED技术,可提供高对比及高分辨率,由于OLED没有背光,而是透过各个像素发光,使得显示器更加纤薄,但是若从斜角观看OLED显示器,色彩和色相有些微偏移。苹果强调,这是OLED的一项
[手机便携]
1车用LCD面板背光应用电源浪涌设计考量
车用的DC电源由电源线提供,这条电源线连接了所有基于线路供电的电子模组、电池,以及由汽车引擎驱动的发电机。对于典型的12V或24V系统来说,我们通常看到的电源电压变化为±30%。因此,汽车应用中的所有电子模组都应该特别注意输入电压的变化。但是在电源浪涌期间,电源电压会大幅上升。在国际标準ISO7637-2中有pulse 2a和pulse 5a规範,并说明产生浪涌的一些塬因,pulse 2a所定义的浪涌是由线路和线束供电的电子模组中突然中断的电感电流所引起。pulse 5a所定义的浪涌是由以下情况所引起:当一个负载突降瞬态放电的电池被断开而且发电机同时又在利用残存在其电路的其他负载产生的充电电流时,激增发生并产生浪涌。   描述上
[模拟电子]
1车用<font color='red'>LCD</font>面板背光应用电源浪涌设计考量
AVR在IC芯片解密技术与传统类型单片机有很大的提高和改善
  AVR与传统类型的 单片机 相比,在 IC 芯片解密技术中除了必须能实现原来的一些基本的功能,其在结构体系、功能部件、性能和可靠性等多方面有很大的提高和改善。   但使用更好的器件只是为设计实现一个好的系统创造了一个好的基础和可能性,如果还采用和沿袭以前传统的硬件和软件设计思想和方法的话,是不能用好AVR的,甚至也不能真正的了解AVR的特点和长处。   功能越好的器件,需要具备更高技术和能力的人来使用和驾驭它。IC芯片解密就象一部好的F1赛车,只有具备高超技术的驾驶员才能充分体会到车的特点,并能最大限度的发挥出车的性能。   AVR具有上手入门快,开发方便简单的特点,但要充分体会和发挥AVR的优点,还需要应用工程师本身的硬软件
[单片机]
基于AVR单片机的核磁共振仪床体检测系统
  1 引言   近年来随着医学技术的快速发展,核磁共振仪已经在大中型医院中被广泛的应用。目前,在核磁共振仪的生产过程中,床体部分要与磁体一起搬入电磁屏蔽室组装后才能进行检测,这对人员和物资都是很大的浪费。针对这种状况,本文设计出了一套核磁共振仪床体部分的运动控制与检测系统,它能够对床体部分独立进行检测,而不必将全部系统在屏蔽室安装后检测,从而降低了核磁共振仪床体部分的生产和检测成本,缩短了生产周期。   本设计以通用医疗集团的Ovation5型核磁共振仪的床体为对象,对驱动床体做横向运动的直流步进电机和驱动床体做纵向运动的直流伺服电机的精确控制问题进行较为深入的分析和研究。系统主要采用了ATMEL公司的Atmega128
[单片机]
基于<font color='red'>AVR</font>单片机的核磁共振仪床体检测系统
大尺寸LCD面板出货量将增长17%
据国外媒体报道,市场研究机构iSuppli预测,大尺寸LCD面板:包括10英寸或更大尺寸的LCD面板在2008年的出货量的增长将高达17.7%,营收将增长19.9%。   该研究公司表示,即将举行的北京奥运会将刺激市场需求,并将促使买家选择较高档次的产品。尽管如此,2008年LCD面板出货量和营收的增长率都将远远低于2007年的水平。   具体来说,iSuppli预期,2008年全球大尺寸TFT LCD面板出货量将达到4.589亿块,比2007年的3.898亿块增长17.7%。不过,这个增长率低于2007年38.9%的增长率。   iSuppli称,以美元计算,2008年全球大尺寸TFT LCD面板的销售收入将达到88
[焦点新闻]
TWI总线模块化设计在智能机器人中的应用
引言 模块化设计的机器人系统由主控制模块和扩展模块构成,主要用于检测机器人周围环境信息和机器人自身运动状态,实时获取各种传感器信息,并对机器人运动进行控制。由于要采集的数据信息很多,本系统应用了TWI总线构建模块化架构,模块均采用AVR单片机为主控芯 片:1片ATmega128(主控)、10片ATmega16、2片ATmega64和3片ATmega8。主控制器要实时地汇总并分析各单片机的信息才能对机器人下一步动作作出决策,因此,各单片机之间的通信显得尤为重要。另外,为了方便对电子罗盘进行标定,需要由主控制器向电子罗盘模块发送相应指令。也就是说,主控制模块与扩展模块之间需要实现双向多字节通信,这是一个通信难点。本系统全部模块均采
[单片机]
TWI总线模块化设计在智能机器人中的应用
基于MAX II系列CPLD 的LCD控制器设计
0前言 液晶显示屏(LCD)是薄型平面显示设备,由排列在光源或者反射器之前一定数量的彩色或者单色象素构成。这类显示屏已经成为大部分嵌入式系统不可缺少的组成部分。但是在嵌入式系统中八位和十六位微处理器大多没有内置的LCD控制器,又由于LCD屏的分辨率很高,即使有内置的LCD控制器,也较难进行控制;另外内置LCD控制器对内存带宽的占用较高,使控制器所能支配的资源也会变得非常有限。因此在微处理器和LCD屏之间加上一个LCD控制器是非常必要的。常用的LCD控制器主要有两种:专用的控制芯片和基于可编程器件的控制器。本文采用Altera公司的MAX II系列CPLD器件来实现LCD控制器。CPLD一般使用外加的串行EEPROM来存储
[模拟电子]
AVR基础知识:ATMEGA的SPI总线 - 第2部分
在第1部分中,我们在AVR ATMEGA328P微控制器上已经设置好SPI总线。现在我们就可以开始使用SPI了。 设置相关引脚 在开始之前,我们需要在AVR上设置SPI总线的引脚(在主机模式下使用)。我在这里使用的是ATMEGA328P,所以需要定义一些宏来使代码变得更清晰。如果您使用不同的微控制器,则可以根据您的需要进行调整。 #define SPI_SS_GPIO PB2 #define SPI_SS_PORT PORTB #define SPI_SS_DDR DDRB #define SPI_MOSI_GPIO PB3 #define SPI_MOSI_PORT PORTB #defin
[单片机]
<font color='red'>AVR</font>基础知识:ATMEGA的SPI总线 - 第2部分
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved