基于SDRAM文件结构存储方式的数据缓存系统

发布者:莫愁前路最新更新时间:2010-10-18 来源: 现代电子技术关键字:SDRAM  存储  数据缓存系统  文件结构 手机看文章 扫描二维码
随时随地手机看文章

O 引言

  面对不同的应用场景,原始采样数据可能包含多种不同样式的信号,这给传统基于连续存储方式的数据缓存系统带来了挑战。除此之外,由于对不同信号的处理往往需要不同的数据帧结构,缓存系统的设计需要保存原始采样数据并能够实现数据的重组帧,以满足不同处理需求。

      针对以上问题,本文提出了一种基于文件结构存储方式的设计方案。


 

  2 系统工作原理

  2.1 文件结构的存储方式

  所谓文件结构指的是,将帧头与其所对应的数据分区存储,在存储时将存储数据的首地址添加到帧头信息中,在读出时,先读取帧头找到数据的首地址,然后加上系统给定的偏移地址算出读取的起始地址,从该地址开始顺序读取要求长度(小于等于帧长)的数据,在送往后端系统时更新帧头信息,后端系统收到数据无需做预处理直接进行计算即可。图2是2种存储结构的比较。

  

 

  基于文件结构的存储方式便于对数据进行管理与操作,功能扩展容易。例如有些处理只对数据的帧头信息进行相关操作,基于文件结构的存储模式可以很方便地支持这种工作模式,只需对缓存介质的帧头区进行操作,而传统的设计则很难满足这种需求,因此新的设计极大地提高了系统的灵活性。

  2.2 数据重组帧的实现

  在设计上,用SDRAM的BANK0(BANK地址“00")和BANKl(BANK地址“01”)存储原始数据,BANK2(BANK地址“10”)存储要送往后端计算的数

  据,BANK3(BANK地址“11”)存储数据的帧头信息。系统在接收到数据重组帧命令后,按照要求抽取,帧数,帧长和帧间隔从低BANK区读取原始数据送入数据重组帧模块形成新的数据帧结构,然后将新的数据帧结构按照文件结构存储到高BANK区中。其实现框图如图3所示。

  

 

  3 控制模块的结构化状态机设计

  在系统架构上采用了结构化状态机的设计方法,通过分层有限状态机实现了主控状态机与具体操作控制状态机的分离,使设计结构清晰,划分合理。降低了设计的复杂性,同时使系统更具有通用性。

  3.1 高层工作模式主控状态机设计

  该缓存系统有3种工作模式:写模式,读模式和数据重组帧模式。其状态转移图如图4所示。

  

 

  系统在空闲状态等待SDRAM初始化完成,当SDRAM完成初始化以后进入准备状态,表示系统可以接收命令,在收到写命令后进入写工作模式,低层写辅助控制模块激活,当完成写操作命令后产生一写完成标志信号,反馈回主控系统促使主控系统完成状态跳转回到准备状态等待下一次命令,收到读取命令后系统进入读工作模式,低层读辅助控制模块开始工作当完成读取操作后产生一读完成标志信号,反馈回主控系统使其回到准备状态等待命令,同样系统收到数据重组帧命令后进人数据重组帧模式,低层重组帧辅助控制模块开始工作完成重组帧任务后产生标志信号控制主控状态机再次回到准备状态,等待下一次命令。

  这种结构化状态机的设计,层次划分合理清晰,工作模式的切换只在主控状态机中实现,各低层辅助控制模块仅仅实现其特定的功能,完全没有交互。因此这种设计可以很方便地进行功能扩展,以后系统要增加新的工作模式,只需再加入一个状态,并单独设计其辅助控制模块即可,无需对原有工作模式进行改动。同时,这种分层设计符合模块化设计的思想,降低了设计的复杂性,易于调试。

  3.2 低层写辅助控制模块的设计

  写辅助控制模块用来实现对原始数据和第1次计算数据基于文件结构的存储。为了提高系统效率,第1次计算所需的数据和原始数据同时存储。其总体设计框图如图5所示。

  

 

  写辅助控制模块在主控状态机进入写工作模式时激活,通过将原始数据分为2路,一路进入原始数据缓存控制模块实现对原始数据的缓存,当原始数据的数据量积累到SDRAM一次突发写所需长度时,该控制模块发出写标志信号通知写模式控制状态机,写模式控制状态机响应写标志信号,向SDRAM驱动控制器发出写指令字控制SDRAM将原始数据写入SDRAM的原始数据区;另一路进入1st计算数据构造与缓存控制模块,该模块用来完成1st计算数据的帧头与数据的构造和缓存,当帧头构造完毕时,通知写模式控制状态机,将帧头(包含数据存储首地址信息)写入到SDRAM的帧头区中,同时当新数据量达到一次突发写入时,将新数据写入SDRAM的计算数据区中,直到将所有数据都写入到SDRAM的对应区内,写模式控制状态机发出写完成标志信号,反馈给高层主控状态机。

  3.3 低层读辅助控制模块的设计

  读辅助控制模块,接收读指令字,该指令字包括帧数、帧长和偏移地址。帧数表征着本次命令要从SDRAM中读取多少帧数据,帧长表示每帧数据要读取的长度(按采样点数算),偏移地址控制对数据的移位读操作。按照指令要求从SDRAM的高BANK区,读出数据送往后端。图6是其总体设计框图。

  

 

  读辅助控制模块在主控状态机进入读工作模式开始工作,它先控制SDRAM驱动器从SDRAM帧头区中读取一个帧头,送入缓存及帧头更新模块,该模块一方面按照指令字更新帧头信息中的数据到达与结束时间,另一方面从帧头信息中找到本帧数据的存储首地址然后加上读指令字中的偏移地址算出本次对数据读操作的起始地址,该地址反馈给读模式控制状态机,控制SDRAM从该地址开始顺序读出数据,完成一帧数

  据的读取操作送往数据缓存模块,重复以上操作直到完成读指令任务,读模式控制状态机发出读完成标志信号,反馈给高层主控状态机。

  3.4 低层数据重组帧辅助控制模块的设计

  数据重组帧辅助控制模块,接收重组帧指令字,该指令字包括重组帧帧数、帧长、帧间隔以及抽取因子,控制SDRAM读取原始数据,生成新的需要的数据帧结构,并按文件结构将其写到SDRAM的计算数据区中。其总体设计框图7所示。

  

 

  数据重组帧辅助控制模块在主控状态机进入重组帧工作模式时开始工作,新数据帧结构生成及缓存模块先构造第一帧数据的帧头信息,当帧头构造完毕后,它向重组帧模式控制状态机发出帧头完毕信号,状态机收到信号后向SDRAM发出写命令将新的数据帧头写入到帧头区中,然后它按照重组帧指令字的要求从SDRAM的原始数据区读出原始数据送往新数据生成模块,当新数据的数据量达到一次突发写长度时,再控制SDRAM将新的数据写入到SDRAM的重组帧数据区中,直到将一帧新的数据都存储到SDRAM中,记录此时的写地址并将其作为下一帧数据的存储首地址加入到下一帧帧头信息中,并发出构造第2帧帧头的命令,等待第2帧帧头完毕标志,重复上面的操作,直到完成要求的重组帧指令。完

  成操作后重组帧模式控制状态机发出重组帧完成标志信号,反馈给高层主控状态机。

  4 硬件平台及实测结果

  在xilinx的开发工具ISE环境下完成了系统的整体设计与仿真,利用xilinx公司的xc2v3000-4fg676FPGA芯片和MICRONE公司的MT48LC32M1 6A2SDRAM芯片搭建了硬件平台,并进行测试。其实测结果如图8所示。

  

 

  主控状态机接收上层的控制命令(写命令、读命令和重组帧命令)分别启动写工作模式、读工作模式和重组帧工作模式;低层各控制模块在完成任务时将完成标志(写完成标志、读完成标志和重组帧完成标志)反馈给主控状态机控制其跳转到就绪状态继续等待下次命令。结果证明该缓存系统实现了预定功能,可以对数据进行更方便的操作与管理。

  5 结语

  本文提出一种基于文件结构存储方式的新数据缓存系统,利用FPGA设计结构化状态机通过对SDRAM的读写控制,完成了具有数据重组帧功能的缓存系统设计。系统具有速度快,可靠性好,灵活性强,功能扩展容易的优点。该系统已应用于实际项目试验,在基于实时复杂信号处理的缓存系统中有很好的应用前景。

关键字:SDRAM  存储  数据缓存系统  文件结构 引用地址:基于SDRAM文件结构存储方式的数据缓存系统

上一篇:普及需时日 USB3.0后年市占率可达60%
下一篇:基于嵌入式应用的单芯片USB方案

推荐阅读最新更新时间:2024-05-02 21:10

三家合作开发NAND存储系统解决方案
恒忆半导体(Numonyx)、群联电子(Phison Electronics Corp.)和海力士(Hynix)今天宣布三家公司签署一份合作开发协议,三方将按照JEDEC新发布的JEDEC eMMC™ 4.4产业标准,为下一代managed-NAND解决方案开发闪存控制器。 预计此项合作将加快当前业内最先进的eMMC标准的推广,有助于管理和简化大容量存储需求,提高无线设备和嵌入式应用的整个系统级性能。 根据这项协议,恒忆、群联电子和海力士将利用各自的技术,开发能够支持各种NAND闪存产品的通用控制器。群联电子将向恒忆和海力士独家供应合作开发的控制器,新的控制器将会强化恒忆和海力士的NAND闪存产品组合。
[半导体设计/制造]
STM32内存分配解析及变量的存储位置
内存映射 在一些桌面程序中,整个内存映射是通过虚拟内存来进行管理的,使用一种称之为内存管理单元(MMU)的硬件结构来将程序的内存映射到物理RAM。在对于RAM紧缺的嵌入式系统中,是缺少MMU内存管理单元的。因此在一些嵌入式系统中,比如常用的STM32来讲,内存映射被划分为闪存段(也被称为Flash,用于存储代码和只读数据)和RAM段,用于存储读写数据。 STM32的Flash和RAM地址范围 标题中所说的内存是指STM32的Flash和RAM,下图是ARM Cortex M3的地址映射 从图中我们可以看出,RAM地址是从0x2000 0000开始的,Flash地址是从0x8000 0000开始的。 Flash 代码
[单片机]
STM32内存分配解析及变量的<font color='red'>存储</font>位置
SST推出通过认证GLOBALFOUNDRIES BCDLite®工艺嵌入式SuperFlash®技术
全球领先的整合单片机、混合信号、模拟器件和闪存专利解决方案的供应商 Microchip Technology Inc.(美国微芯科技公司)日前通过其子公司Silicon Storage Technology(SST)宣布推出已通过认证、基于GLOBALFOUNDRIES 130 nm BCDLite 技术平台的、SST低掩膜次数的嵌入式SuperFlash 非易失性存储器(NVM)技术。仅仅只需四步掩膜即可将SST嵌入式SuperFlash存储解决方案和GLOBALFOUNDRIES的BCDLite技术结合在一起,为电源、单片机(MCU)和工业IC设计人员提供兼具成本效益、高耐用性的嵌入式闪存解决方案。在诸如电池充电(5V-30V)
[嵌入式]
STM32F1学习-深入理解存储器(存储器映射以及bit-band)
1.存储器映射 STM32F1的系统结构 存储器映射 STM32F1的存储器的映射 存储器映射是指把芯片中或芯片外的FLASH,RAM,外设,BOOTBLOCK等进行统一编址。即用地址来表示对象。这个地址绝大多数是由厂家规定好的,用户只能用而不能改。用户只能在挂外部RAM或FLASH的情况下可进行自定义。 从系统结构图中我们可以看出,所有内部设备都是AHB System Bus上,AHB系统总线又分成两个连接的桥,APB1的操作速度限于36MHZ,APB2的操作速度是全速(最高72MHZ)可以很清晰的从图中看出每个桥连接的内部设备。 寄存器(GPIOX)组起始地址 我们以GPIOA为例子。首先我们得明确
[单片机]
STM32F1学习-深入理解<font color='red'>存储</font>器(<font color='red'>存储</font>器映射以及bit-band)
中国研发团队研发出一种新二维非易失性存储芯片
相比三星、东芝、美光等公司,中国现在DRAM内存、NAND闪存技术上要落后多年,不过中国的科研人员也一直在追赶最新一代技术,前不久有报道称中国投资130亿元开建PCM相变内存,性能是普通存储芯片的1000倍,现在更厉害的来了——复旦大学微电子学院教授张卫、周鹏带领的团队研发了一种新的二维非易失性存储芯片,他们使用了半导体结构,研发的存储芯片性能优秀,是传统二维存储芯片的100万倍,而且性能更长,刷新时间是内存的156倍,也就是说具备更强的耐用性。 DIY玩家应该知道内存、闪存各自的优缺点——内存速度极快,但是断电就会损失数据,而且成本昂贵,闪存的延迟比内存高一个量级,但好处就是能保存数据,同时成本更低,所以业界一直在寻找能同时
[网络通信]
基于LPC2292的CAN总线智能节点设计
引言 CAN(Controller Area Network)总线控制器局域网络是在1986年2月的SAE大会上,由RoberBosch公司首先提出的。CAN总线是一种串行通信协议,它能有效支持高安全等级的分布式实时控制,其最初的目的是用在汽车上。但由于采用了许多新技术及独特的设计,CAN总线与一般的通信总线相比,它的数据通信具有突出的可靠性、实时性和灵活性,目前的应用范围已不局限于汽车行业,而是扩展到了机械工业、纺织机械、农用机械、机器人、数控机床、医疗器械、家用电器及传感器等诸多领域。CAN节点的设计多采用单片机,为此,本文给出了一种基于本身已经嵌入了CAN控制器的单片机LPC2292的CAN总线智能节点的设计方案。 1
[工业控制]
TP程序存储空间扩展功能
一、简介 本章介绍TP DRAM/FILE存储器功能。 1.1机器人要求 要在配制R-30iB控制柜的机器人中使用此功能,需要安装软件选项包:R709 TP DRAM/FILE Storage function。 1.2主要功能 TP DRAM/FILE存储器功能增加外部存储器CMOS增强程序存储空间。 1.3相关手册 本软件是基于手册FANUC R- 30iB Controller Option Function Operator’s Manual (B-83284EN-2_04)第29章TP DRAM/FILE Storage function 功能的说明。 二、功能说明 2.1存储器 系统提供四种类型的存储器:SHAD
[机器人]
片外FIash存储器IAP的n种方案
引 言   以ARM芯片为处理器核的嵌入式应用系统,以其小体积、低功耗、低成本、高性能、丰富的片内资源以及对操作系统的广泛支持,得到了人们越来越多的青睐。包括工业控制领域、无线通信领域、网络应用、消费电子、成像和安全产品等,如今,ARM微处理器及嵌入式技术的应用几乎已经渗透到了各个领域。其中ARM7作为ARM微处理器系列中的一员,是低功耗的32位RISC处理器。Samsung公司的S3C4510B、Philips公司的LPC20XX、LPC21XX、LPC22XX系列等都是ARM7处理器。这些为数繁多的ARM7处理器,因其片内外设不同而各擅所长,但都应用同样的ARM7TDMI核(或ARM7TDMI—S核,这是ARM7TDMI的综
[模拟电子]
片外FIash<font color='red'>存储</font>器IAP的n种方案
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved