RS-485总线的理论与实践

发布者:悠闲之旅最新更新时间:2011-05-06 关键字:RS-485  现场总线  信号衰减  信号反射 手机看文章 扫描二维码
随时随地手机看文章
    当前自动控制系统中常用的网络,如现场总线CAN、Profibus、INTERBUS-S以及ARCNet的物理层都是基于RS-485的总线进行总结和研究。 

    一、EIA RS-485标准 

    在自动化领域,随着分布式控制系统的发展,迫切需要一种总线能适合远距离的数字通信。在RS-422标准的基础上,EIA研究出了一种支持多节点、远距离和接收高灵敏度的RS-485总线标准。 

    RS-485标准采有用平衡式发送,差分式接收的数据收发器来驱动总线,具体规格要求: 

    1.接收器的输入电阻RIN≥12kΩ 

    2.驱动器能输出±7V的共模电压 

    3.输入端的电容≤50pF 

    4.在节点数为32个,配置了120Ω的终端电阻的情况下,驱动器至少还能输出电压1.5V(终端电阻的大小与所用双绞线的参数有关) 

    5.接收器的输入灵敏度为200mV(即(V+)-(V-)≥0.2V,表示信号“0”;(V+)-(V-)≤-0.2V,表示信号“1”) 

    因为RS-485的远距离、多节点(32个)以及传输线成本低的特性,使得EIA RS-485成为工业应用中数据传输的首选标准。

    二、影响RS-485总线通讯速度和通信可靠性的三个因素

    1、在通信电缆中的信号反射

    在通信过程中,有两种信号因导致信号反射:阻抗不连续和阻抗不匹配。

    阻抗不连续,信号在传输线末端突然遇到电缆阻抗很小甚至没有,信号在这个地方就会引起反射,如图1所示。这种信号反射的原理,与光从一种媒质进入另一种媒质要引起反射是相似的。消除这种反射的方法,就必须在电缆的末端跨接一个与电缆的特性阻抗同样大小的终端电阻,使电缆的阻抗连续。由于信号在电缆上的传输是双向的,因此,在通讯电缆的另一端可跨接一个同样大小的终端电阻,如图2所示。


 

 

 

 

 

 

 

 

 

    从理论上分析,在传输电缆的末端只要跨接了与电缆特性阻抗相匹配的终端电阻,就再也不会出现信号反射现象。但是,在实现应用中,由于传输电缆的特性阻抗与通讯波特率等应用环境有关,特性阻抗不可能与终端电阻完全相等,因此或多或少的信号反射还会存在。

    引起信号反射的另个原因是数据收发器与传输电缆之间的阻抗不匹配。这种原因引起的反射,主要表现在通讯线路处在空闲方式时,整个网络数据混乱。

    信号反射对数据传输的影响,归根结底是因为反射信号触发了接收器输入端的比较器,使接收器收到了错误的信号,导致CRC校验错误或整个数据帧错误。

    在信号分析,衡量反射信号强度的参数是RAF(Refection Attenuation Factor反射衰减因子)。它的计算公式如式(1)。

    RAF=20lg(Vref/Vinc) (1)

    式中:Vref—反射信号的电压大小;Vinc—在电缆与收发器或终端电阻连接点的入射信号的电压大小。

    具体的测量方法如图3所示。例如,由实验测得2.5MHz的入射信号正弦波的峰-峰值为+5V,反射信号的峰-峰值为+0.297V,则该通讯电缆在2.5MHz的通讯速率时,它的反射衰减因子为:

    RAF=20lg(0.297/2.5)=-24.52dB


 

 

 

 

 

    要减弱反射信号对通讯线路的影响,通常采用噪声抑制和加偏置电阻的方法。在实际应用中,对于比较小的反射信号,为简单方便,经常采用加偏置电阻的方法。在通讯线路中,如何通过加偏置电阻提高通讯可靠性的原理,后面将做详细介绍。

    2、在通讯电缆中的信号衰减

    第二个影响信号传输的因素是信号在电缆的传输过程中衰减。一条传输电缆可以把它看出由分布电容、分布电感和电阻联合组成的等效电路,如图4所示

 

 

 

 

 

    电缆的分布电容C主要是由双绞线的两条平行导线产生。导线的电阻在这里对信号的影响很小,可以忽略不计。信号的损失主要是由于电缆的分布电容和分布电感组成的LC低通滤波器。PROFIBUS用的LAN标准型二芯电感(西门子为DP总线选用的标准电缆),在不同波特率时的衰减系数如表1所示。

                  表1 电缆的衰减系数

            通讯波特率       16MHz   4MHz   38.4kHz  9.6kHz
            衰减体系数(1km)    ≤42dB  ≤22dB   ≤4dB   ≤2.5dB 

    3、在通讯电缆中的纯阻负载

    影响通讯性能的第三个因素是纯阻性负载(也叫直流负载)的大小。这里指的纯阻性负载主要由终端电阻、偏置电阻和RS-485收发器三者构成。


 

 

 

 

 

    在叙述EIA RS-485规范时曾提到过RS-485驱动器在带了32个节点,配置了150Ω终端电阻的情况下,至少能输出1.5V的差分电压。一个接收器的输入电阻为12kΩ,整个网络的等效电路如图5所示。按这样计算,RS-485驱动器的负载能力为:

    RL=32个输入电阻并联||2个终端电阻=((12000/32)×(150/2))/(12000/32)+(150/2))≈51.7Ω

    现在比较常用的RS-485驱动器有MAX485、DS3695、MAX1488/1489以及和利时公司使用的SN75176A/D等,其中有的RS-485驱动器负载能力可以达到20Ω。在不考虑其它诸多因素的情况下,按照驱动能力和负载的关系计算,一个驱动器可带节点的最大数量将远远大于32个。

    在通讯波特率比较高的时候,在线路上偏置电阻是很有必要的。偏置电阻的连接方法如图6。它的作用是在线路进入空闲状态后,把总线上没有数据时(空闲方式)的电平拉离0电平,如图7。这样一来,即使线路中出现了比较小的反射信号或干扰,挂接在总线上的数据接收器也不会由于这些信号的到来而产生误动作。


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    通过下面后例子了,可以计算出偏置电阻的大小:

    终端电阻Rt1=Rr2=120Ω;

    假设反射信号最大的峰-峰值Vref≤0.3Vp-p,则负半周的电压Vref≤0.15V;终端的电阻上由反射信号引起的反射电流Iref≤0.15/(120||120)=2.5mA。一般RS-485收发器(包括SN75176)的滞后电压值(hysteresis value)为50mV,即:

    (Ibias-Iref)×(Rt1||Rt2)≥50mV

    于是可以计算出偏置电阻产生的偏置电流Ibias≥3.33mA

    +5V=Ibias(R上拉+R下拉+(Rt1||Rt2)) (2)

    通过式2可以计算出R上拉=R下拉=720Ω

    在实际应用中,RS-485总线加偏置电阻有两种方法:

    (1)把偏置电阻平衡分配给总线上的每一个收发器。这种方法给挂接在RS-485总线上的每一个收发器加了偏置电阻,给每一个收发器都加了一个偏置电压。

    (2)在一段总线上只用一对偏置电阻。这种方法对总线上存在大的反射信号或干扰信号比较有效。值得注意的是偏置电阻的加入,增加了总线的负载。

    三、RS-485总线的负载能力和通讯电缆长度之间的关系

    在设计RS-485总线组成的网络配置(总线长度和带负载个数)时,应该考虑到三个参数:纯阻性负载、信号衰减和噪声容限。纯阻性负载、信号衰减这两个参数,在前面已经讨论过,现在要讨论的是噪声容限(Noise Margin)。RS-485总线接收器的噪声容限至少应该大于200mV。前面的论述者是在假设噪声容限为0的情况下进行的。在实际应用中,为了提高总线的抗干扰能力,总希望系统的噪声容限比EIA RS-485标准中规定的好一些。从下面的公式能看出总线带负载的多少和通讯电缆长度之间的关系:

    Vend=0.8(Vdriver-Vloss-Vnoise-Vbias) (3)

    其中:Vend为总线末端的信号电压,在标准测定时规定为0.2V;Vdriver为驱动器的输出电压(与负载数有关。负载数在5~35个之间,Vdriver=2.4V;当负载数小于5,Vdriver=2.5V;当负载数大于35,Vdriver≤2.3V);Vloss为信号在总线中的传输过程中的损耗(与通讯电缆的规格和长度有关),由表1提供的标准电缆的衰减系数,根据公式衰减系数b=20lg(Vout/Vin)可以计算出Vloss=Vin-Vout=0.6V(注:通讯波特率为9.6kbps,电缆长度1km,如果特率增加,Vloss会相应增大);Vnoise为噪声容限,在标准测定时规定为0.1V;Vbias是由偏置电阻提供的偏置电压(典型值为0.4V)。

    式(3)中乘以0.8是为了使通信电缆不进入满载状态。从式(3)可以看出,Vdriver的大小和总线上带负载数的多少成反比,Vloss的大小和总线长度成反比,其他几个参数只和用的驱动器类型有关。因此,在选定了驱动器的RS-495总线上,在通信波特率一定的情况下,带负载数的多少,与信号能传输的最大距离是直接相关的。具体关系是:在总线允许的范围内,带负载数越多,信号能传输的距离就越小;带负载数据少,信号能传输的距离就发越远。

    四、分布电容对RS-485总线传输性能的影响

    电缆的分布电容主是由双绞线的两条平行导线产生。另外,导线和地之间也存在分布电容,虽然很小,但在分析时也不能忽视。分布电容对总线传输性能的影响,主要是因为总线上传输的是基波信号,信号的表达方式只有“1”和“0”。在特殊的字节中,例如0x01,信号“0”使得分布电容有足够的充电时间,而信号“1”到来时,由于分布电容中的电荷,来不及放电,(Vin+)—(Vin-)-还大于200mV,结果使接爱误认为是“0”,而最终导致CRC校验错误,整个数据帧传输错误。具体过程如图8所示。


 

 

 

 

 

 

 

    由于总线上分布影响,导致数据传输错误,从而使整个网络性能降低。解决这个问题有两种方法:

    (1)降低数据传输的波特率;

    (2)使用分布电容小的电缆,提高传输线的质量。

关键字:RS-485  现场总线  信号衰减  信号反射 引用地址:RS-485总线的理论与实践

上一篇:RS485总线稳定性解决方案
下一篇:如何在DS26303 LIU启用ITU-T G.703 2048kHz同步接口

推荐阅读最新更新时间:2024-05-02 21:22

现场总线技术在氯碱厂控制系统改造中的应用
1  引言           profibus 现场总线 具有开放性好、扩展性强、速度快等特点,由其构成的兼容 网络 系统,可应用于不同的场合。其中profibus-dp能够满足生产过程中现场级数据的可存取性,具有单元级领域的所有 网络通信 功能。随着网际网络与信息技术的的日渐成熟,工业界有越来越多的 通信 与 自动化 应用正逐渐形成采用 以太网 和tcp/ip协议作为主要通信 接口 的趋势。氯碱厂的氯乙稀车间的原 控制系统 的 plc 是由 西门子 simat ic s5-135u通过 开关 量实现对步进炉区域的在线设备进行手动和自动控制。由于系统老化、线路繁多和抗干扰能力差等原因,近年来系统故障率很高,造成设备运行不稳定,维
[嵌入式]
技术文章—RS-485总线电平异常解决方案解析
摘要:各位工程师是否会遇到这样的情况,测试单个RS-485设备数据无异常,但设备组网后,就出现通讯数据异常或连接失败等情况。出错的原因是什么?本文将从门限电平为你揭秘RS-485组网异常。 RS-485总线是具有结构简单、通信距离远、通信速度高、成本低等优点,广泛应用于工业通讯、电力监控以及仪器仪表等行业。若总线上接有终端电阻,则在总线空闲状态时,RS-485总线AB差分电压可能处于门限电平(±200mV)之内,这时可能会导致通信出错,那么,出错的原因是什么?MCU接收到的数据会发生什么样的变化? 1、 数据出错的原因 如图 1所示为8位数据位无校验位的UART时序图,当使用UART进行通信时,MCU在检测到起始位后
[测试测量]
技术文章—<font color='red'>RS-485</font>总线电平异常解决方案解析
什么是现场总线 有什么作用
    说起现场总线,这项技术虽不能说是这两年自控领域讨论最广的话题,但也能算得上自控厂商相互角逐争夺市场的一项技术。实际上自动化厂商心里很清楚,谁掌握了现场总线,谁就掌握了标准,谁掌握了标准,谁就掌握了市场谁就是技术领头羊。那么现场总线到底是什么?    现场总线技术是20世纪80年代中期在国际上发展起来的一种工业控制技术。通俗地讲,现场总线就是用在现场的总线技术,和计算机内部的总线概念一样,但是由于现场的特殊环境(如温度,安装条件,干扰等等),不同于计算机通常用于室内,为了区别,所以我们把这种总线称为现场总线。     做过PLC的人都知道,如果现场有100个I/0点,我们就需从PLC柜引超过100根的电线到现场,如果是
[嵌入式]
现场总线和DCS、FCS的三者之间的联系
FCS就是现场总线控制技术,这两者是一回事。 FCS是由PLC发展而来的;而在另一些行业,FCS又是由DCS发展而来的,所以FCS与PLC及DCS之间有着千丝万缕的联系,又存在着本质的差异。 FCS是由DCS与PLC发展而来,FCS不仅具备DCS与PLC的特点,而且跨出了革命性的一步。而目前,新型的DCS与新型的PLC,都有向对方靠拢的趋势。新型的DCS已有很强的顺序控制功能;而新型的PLC,在处理闭环控制方面也不差,并且两者都能组成大型网络,DCS与PLC的适用范围,已有很大的交叉。 DCS系统的关键是通信。也可以说数据公路是分散控制系统DCS的脊柱。由于它的任务是为系统所有部件之间提供通信网络,因此,数据公路自身的设计就决
[嵌入式]
嵌入式PROFIBUS-DP从站通信接口的设计
  0引言   目前国内对自动化产品(电器、仪表、驱动装置等)提出Profibus通信功能要 求,主要来源于:   (1)国外生产设备及技术的引进,特别是从欧洲引进的成套设备通常采用Profibus现场总线 ,因此对国内配套产品提出了现场总线PROFIBUS通信功能的技术要求;   (2)国内自动化系统厂家比较成功的、面向行业的控制系统,要求系统技术向现场总线技术 发展,同时也要求现场设备向智能化、网络化方向发展。   基于上述需求,嵌入式Profibus-DP从站通信接口的设计为自主开发具有PROFIBUS-DP通信功能产品的用户提供了一种快速、高效的解决方案。   1实现方法   (1)电路设计制作:使用Pro
[嵌入式]
现场总线技术在电厂的应用思考
     1. 前言       在电厂信息化的建设过程中,越来越多的专家、学者和电力工程设计人员意识到推动现场总线技术在电厂应用的重要性和迫切性,已有许多论文提出了基于现场总线技术的控制系统在电厂的应用设想和建议。但到目前为止,在国内已建和在建电厂中,真正意义上的全面和系统地应用现场总线控制系统的实例还未见报道,见诸于文献的还只是局部的试点应用。大家对现场总线技术代表了未来电厂自动化的发展方向均持肯定和积极的态度,但为什么在工程设计中却又难以进入实质性的应用呢?      为了便于下面对这个问题的讨论,尽管关于现场总线和现场总线控制系统的涵义已反复在相关文献中进行了阐述,笔者依然觉得还是有必要先引用国际电工委员会IEC及专家对什
[嵌入式]
基于现场总线技术的工业控制系统研究
1 现场总线技术简介     在现场工业控制技术中,现场总线技术作为一项先进技术,是一种串行、数字式、多点通信的数据总线。工作实践中,在生产过程区域的现场设备/仪表和控制室内自动控制装置/系统之间广泛安装现场总线。借助现场总线实现信息的相互交换,进而自动控制功能在一定程度上也得以完成,现场总线往往是从控制室连接到现场设备的双向全数字通信总线。 2 现场总线的通信协议     如图 1 所示,给出了现场总线相应的物理结构。与开放式互连(OSI)参考模型相比,现场总线的物理结构只涉及到物理层、数据链路层和应用层,并且每个协议层各自完成功能,在这些层之间报文被解析。在数据链路实体中,物理层建立、维护和拆除相应的物理连接。
[嵌入式]
基于现场总线的分布式闸门监控系统
    摘要: 介绍了结合工程实际需要而研制的一种基于现场总线的分布式闸门监控系统,内容包括:监控系统的组成、各部分功能设计、可编程控制器(PLC)程序设计及闸门监控中心软件设计等。     关键词: 水利自动化系统 计算机监控系统 现场总线 PLC 近年来,随着计算机网络技术的飞速发展,现代过程控制系统已从集散控制系统(DCS)向现场控制系统(FCS)发展。现场总线技术使单个分散的现场设备通过总线连接成可以相互沟通信息、共同完成任务的网络系统和控制系统,形成控制功能彻底下放到现场的全分布网络集成式新型控制系统,实现了开放式的通信解决方案,使控制系统结构更趋于智能化、分布化,也使网络系统结构更为扁平化、集成化
[工业控制]
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved