图像采集与处理在智能车系统中的应用

发布者:sdlg668最新更新时间:2011-05-12 来源: 电子产品世界 关键字:智能车  CMOS摄像头  经典PID算法 手机看文章 扫描二维码
随时随地手机看文章

  系统概述

  智能小车系统主要由路径识别、速度采集、转向控制及车速控制等功能模块组成。路径识别功能采用CMOS摄像头,将其模拟量的视频信号进行视频解码后,经过二值化处理并转化为18×90pix的图像数据后送入MCU进行处理;转向控制采用基于模糊控制算法进行调节;而车速控制采用的是经典PID算法,通过对赛道不同形状的判断结果,设定不同的给定速度。该系统以50Hz的频率通过不断地采集实时路况信息和速度,实现对整个系统的闭环控制,如图1所示。

 

  智能小车的图像采集与存储

  图像采集模块设计

 

  CMOS摄像头正常供电后,便可输出原始图像的信号波形,它是PAL制式的模拟信号,包含行同步、行消隐、场同步、场消隐等信号如图2所示。但该形式的信号并不能被CPU直接使用,需要加入视频解码芯片如SAA7111,它的功能是将摄像头输出的模拟信号转化为数字信号,同时产生各种同步信号,CPU利用此同步信号将图像的数字信号存储在一个外部FIFO芯片AL422中,这便构成了基本的路径检测模块,如图3所示。


  图像数据存储

  SAA7111是飞利浦公司一款增强型视频输入处理器芯片,常应用在嵌入式视频应用的高度集成的电路中。工作时,模拟视频图像从SAA7111的4个输入端口中的一个端口输入,经模拟处理后,一路通过缓冲器从模拟输出端输出用于监视,另一路经A/D后产生数字色度信号、亮度信号,分别进行亮度信号处理、色度信号处理。亮度信号处理的结果,一路送到色度信号处理器进行综合处理,产生Y、U、V信号,经格式化后从VPO输出,输出的信号格式有422YUV或CCIR-656(8位)等;另一路进入同步分离器,经数字PLL,产生相应的行、场同步信号HS、VS及像素时钟信号LLC和LLC2等信号,这些信号是实现视频数据采集的依据。SAA7111输出的每帧图像大小可设为720×286,其数据量相对于单片机的处理速度来说是比较大的,较为理想的图像大小是18×45,压缩后的数据量仅为原始图像的0.394%。为了使图像的数据得到有效压缩,可以采用将图像的数字信号存入FIFO中,经过一定的分频处理后便能压缩图像大小,系统所采用的FIFO芯片是AL422B。

  为了实现图像数字信号的分频处理,可以分为两种实现方式,其一是软件分频,另一种是硬件分频。对于软件分频来说,系统不需要额外的分频电路,而是单片机利用解码芯片SAA7111输出的控制信号,对读时钟进行分频后再执行实际的读操作,这种方式的缺点是分频工作需要占用单片机资源,影响系统的实时性等性能;对于硬件分频来说,需要加入专门的分频处理电路,在不需要单片机控制的条件下实现图像的压缩,从而在根本上减少了单片机处理的数据量并缩短读取图像的时间。因此该系统采用了硬件分频的方式,具体信号的分频模式如图4所示,CREF代表像素时钟,分频后得到的是AL422B的写时钟WCK,HREF代表行参考信号,分频后得到的信号作为AL422B的写允许信号。

 

  图像去噪与特征提取

  图像二值化

  图像二值化是数字图像处理技术中的一项基本技术,该系统中由于赛道是由黑色和白色两种颜色组成的,并且背景颜色基本也是白色的,系统的任务是识别出黑色的引跑线位置,由于其图像的干扰并不是很强,因此可以采用二值化的技术作为系统的图像预处理。经过二值化处理将原来白色的像素点用0表示,而黑色像素点用1表示。图像二值化技术的关键在于如何选取阈值通常来说,常用的方法包括有全局阈值法,局部阈值法及动态阈值法。由于赛道现场光线是比较均匀,而且赛道周围的底色基本上都是白色的,所以在该系统设计中采用全局阈值法,可达到算法简单,执行效率高的效果。

  二值化阀值选取

  在对赛道环境的分析中,我们可以发现黑线部分的亮度是相对比较固定的,其波动的范围非常小,小于20(亮度值最大为255),而白色底板的亮度值变化相对较大一些,但仍能保证其与黑线的亮度值有较大的梯度。因此,可以采用直方图统计法来对其阀值进行自动设定,具体方法如下。

       首先存储一幅原始图像的所有数据,然后对整幅图像的第一像素点进行统计,最终把第个亮度值所对应的像素点个数统计出来,结果将出现一个双波峰形图,如图5所示。这将能较直接地比较出亮度值集中的区域,以两个波峰的中心位置所在的中点值作为该赛道的二值化阀值。该算法计算的精度较高,能够找到理想的一个阀值点,虽然它执行的时间较长,但是这只是在赛车未起跑前进行的初始化运算,对赛车起跑后的速度完全没有影响,因此该方案是可以采用的。

 

  图像去噪

  在车体运动过程中,图像经过二值化后并不会出现太大的噪声,只是在局部出现了一小部分的椒盐噪声,其典型图像如图6所示。在该系统设计中,图像处理的目的是准确地找到黑线的中心位置。由于图像中噪声的面积非常小,并且一般出现在离黑线较远的地方,处理的方法也比较多,可采用中心坐标递推法。


由于该赛道的黑线细分为每一行的坐标后,相邻两行之间的中心坐标值之差是比较小的,经实验测试得其差一般不会超过5,具有很好的递推性。因此可以利用前一行的中心坐标往下递推来求解,具体步骤如下。

  (1)由于摄像头近处的黑线拍摄效果较好,不仅黑线的宽度比较大,而且基本不会出现任何噪声,用其作为递推的基准点是非常好的选择。由于这是整幅图像的基准点,因此对其准确性要求比较高,在计算第一行的中心坐标值时采用黑线连续记数法,即只有连续读取到3个或以上“1”时才算有效的黑线,并记录黑线的块数,否则将其清零,最终再查看该行黑线块数是否为1,若不为1则改用第二行图像数据作判断,如此递增直到找到唯一的黑线为止。

       (2)以第一次找到的中心坐标为基准,向上一行搜索分布在其左右两侧各10个点这个区间内的黑线位置,然后同样利用重心法求出在该区间内的黑点中心坐标值,并把它作为这一行的中心坐标基准点。

  (3)按照步骤(2)逐步往上一行递推,如果遇到全0的行则停止黑线的搜索。图6所示的图像经过该算法处理后得到的图像如图7所示,可见此方法能够有效地消除图像的噪声。

 

关键字:智能车  CMOS摄像头  经典PID算法 引用地址:图像采集与处理在智能车系统中的应用

上一篇:把32位微控制器性能带入工业和汽车应用
下一篇:基于H8Sx/1544的汽车组合仪表设计

推荐阅读最新更新时间:2024-05-02 21:23

基于激光传感器的智能车的坡道检测
    基于激光传感器智能车,利用单个水平照射的激光传感器,有效地检测坡道信息,并针对坡道做出相应的控制方案。由于该车模是自动循迹的,因此对赛道信息的依靠程度比较高,对传感器的精度和抗干扰能力要求也比较高。激光传感器通过调制发射避免了自然光对其造成的影响,提高了抗干扰能力。激光传感器相比于红外传感器在作用距离方面要远远优先,因此前瞻距离较大,大大提升了控制效果,而且激光传感器的接收电路能直接得到二值化后的结果,省去了中间模数转换和二值化的过程,采集到的信号返回给单片机直接是0和1,减少了单片机的工作量,提高单片机的整体运算速度。但激光传感器也存在不能克服的问题,正是因为激光的作用距离远,也就出现了难以检测坡道信息的问题。 1 问题
[嵌入式]
基于自适应模糊PID智能车用直流电机控制器仿真研究
    智能车是一种集环境感知、规划决策、自动行驶等功能于一体的综合系统,具有时变且非线性特点。其中控制算法对智能车起着关键作用,传统的PID控制难以得到很好的效果。采用自适应模糊PID控制算法可以使系统具有很好的动态响应性能,并且可以对PID参数进行在线自调整,提高了系统的适应性和鲁棒性,改善了系统的稳态误差和效率,并使其抗干扰能力明显提高。 1 自适应模糊PID控制器     自适应模糊PID控制器结构如图1所示,自适应模糊PID是在PID算法的基础上,通过计算当前系统误差e和误差变化率ec,利用模糊规则进行模糊推理,查询模糊矩阵表进行在线参数调整。本系统通过增量式旋转编码器对速度进行检测,经过信号转换与单片机进行通信,将输入
[嵌入式]
基于MC9S12单片机的智能车数据远程传输系统
我国已经成为世界上规模最大的汽车市场之一,汽车在国民经济生产和生活中的重要作用日益显著。近年来,如何使车辆驾驶更加安全、高效、环保、舒适的研究越来越受到各国研究学者关注。由相关的无线通信网络电路实时地处理这些信息。例如,给驾驶员提供道路的提示、警告等信息。这样,可大大减少了驾驶员由于疲劳等因素带来的驾驶危险,增强了道路交通以及驾驶员人身的安全性;另外,一旦发生车辆故障、交通堵塞或交通事故,将给车辆调度、乘客出行带来不便。 随着社会的快速发展和商业化进程的加速,越来越多的行业和部门需要掌握车辆或其它移动目标的实时信息并能远程控制目标。这类需求使得车辆数据远传控制系统逐渐成为国内外的研究热点。车辆数据远传控制系统通过站点终端及时
[单片机]
基于MC9S12单片机的<font color='red'>智能车</font>数据远程传输系统
智能车门研究:装配率持续提升,集成化趋势明显
佐思汽研发布《2023年中国 智能车 门市场研究报告》,从中国智能车门的功能特点、市场现状、主机厂布局、供应商布局、发展趋势等方面进行分析研究。 智能车门在传统车门的基础上通过增加车门控制单元、 驱动器 、 传感器 等零部件,实现智能解锁、自动开/关门、环境感知、坡度悬停甚至与其他组件的互动联合等智能化功能。随着汽车智能化发展,车门智能化需求正不断提升。 1、车门智能化功能装配率迅速提升 从市场化程度来看,现阶段已经实现规模化上车的车门智能化功能主要有APP控制车门、DOW开门预警、隐藏式电动门把手、无框车门、电动吸合门、自动开合门等。 APP控制车门的装配率最高,截至2023年7月装配率已超过30%;DOW开门预
[汽车电子]
<font color='red'>智能车</font>门研究:装配率持续提升,集成化趋势明显
基于WinCE的智能车载仪表设计
       设计一款基于WinCE操作系统的智能车载仪表,通过CAN总线接收汽车各个部件的ECU的信息,并将其显示在液晶显示屏中。以ARM9内核的S3C2440微处理器为核心,设计了外围硬件以及CAN总线在WinCE中的底层驱动和上位应用程序。   引言   随着高性能电子显示技术的发展,汽车仪表电子化的程度越来越高。国内外已开发出了多功能全电子显示仪表、平视显示仪表、汽车导航系统、行车记录仪等高技术产品。未来,车用电子化嵌入式仪表具有以下优点:提供大量复杂的信息,使汽车的电子控制程度越来越高;满足小型、轻量化的要求,使有限的驾驶空间更人性化;高精度和高可靠性实现汽车仪表的电子化,降低了故障的发生率;设有在线故障诊断系统,一
[嵌入式]
防盗功能的智能车模型举例
简介:本文采用增强型32位低功耗单片机STM32F103VC、指纹识别技术和无线通信GSM技术设计了汽车防盗系统,它利用人体指纹的生物特征的惟一性,通过指纹识别控制汽车的电路、油路等,从而达到防盗的目的,解决了目前广泛采用的无线遥控方式存在空中截码和非法获取电子钥匙合法开车等问题。GSM技术增加了人防功能,它能通过无线网络进行远程报警。本系统的设计,有效的弥补了单一防盗电路的缺点,保障了汽车的安全。 目前市场上销售的汽车防盗报警器多为加装式汽车防盗器和采用电子密码钥匙的汽车防盗器。加装式汽车防盗器主要采用串接式的线路,对于精通汽车电路的盗贼来说,用跨接的方法可很轻松地避开防盗电路,防盗系统如同虚设。 随着汽车市场的飞速发展
[单片机]
防盗功能的<font color='red'>智能车</font>模型举例
纳智捷Think+:自主智能车载系统
    按照东风裕隆汽车有限公司总经理吴新发的说法:东风裕隆的产品有两颗引擎,一颗是发动机,另一颗是“THINK ”。     从2010年9月徐平和严凯泰正式牵手,到2011年9月第一辆纳智捷大7 SUV在杭州下线,再到2012年10月MASTER CEO上市,2013年7月即将推出S5轿车,三年来,东风裕隆通过THINK 车载系统让纳智捷这个新品牌走了一条智能化自主发展之路。 THINK “顶风作案”     THINK 车载智能系统可以实现与导航、安全、车辆、生活、商务相关的各种车载服务。纳智捷希望这套系统在基于安全性的大前提下,最大限度提升用户的使用体验。除了常规的路况导航、新闻广播、道路救援等服务外,THIN
[汽车电子]
盖世汽车研究院:智能车灯正在向多模态人车交互形式发展
目前随着汽车 智能化 趋势的发展,汽车车灯也由传统的照明功能向人车交互、车车交互的智能化功能发展,其中前照灯和尾灯的功能性和价值量是整车照明系统中最高的,基于此背景,盖世汽车研究院的重点研究方向为前照灯与尾灯,分别从产业概况、市场和产业分析及发展趋势三个维度进行研究分析。本报告部分内容如下: 汽车车灯按功能大致分为照明灯、信号灯和装饰灯三大类,根据灯的位置区分为车内灯和车外灯,前照灯是单车照明系统中价值量最高的车灯产品,单车价值量400-2000元,占比66%;其次是尾灯,单车价值量400-1000元,占比17%;车灯按光源分主要有卤素灯、氙气灯、LED灯、激光灯以及 OLED 灯五种,其中LED灯凭借亮度高、寿命长、功耗低、
[汽车电子]
盖世汽车研究院:<font color='red'>智能车</font>灯正在向多模态人车交互形式发展
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved