基于CAN总线的电动汽车控制系统设计

发布者:老卫最新更新时间:2011-08-17 关键字:CAN总线  电动汽车控制 手机看文章 扫描二维码
随时随地手机看文章

  当前全球汽车工业面临金融危机和能源环境问题的巨大挑战,实现汽车能源动力系统的电气化,已经成为汽车产业的趋势。提高电动汽车上的各个控制单元间通信的可靠性和实现高传输速率,选择CAN总线协议。CAN总线为多主工作方式,网络上任何节点均可在任意时刻向其他节点发送信息。它采用非破坏性的基于优先权的总线仲裁技术,可靠性高。CAN总线通信距离长达10 km,通信速率最高可达1 Mb/s。CAN通信系统抗干扰性好,工作稳定。某个节点出现故障,不会导致整个系统通信的不正常。由于采用短帧的报文结构,数据传输时间短,具有很强的抗干扰性,具有高效的非破坏总线仲裁,出错检测和故障自动关闭等优点。

1 控制系统整体结构
   
电动车控制系统由电池管理、充电机、电动机和整车控制等模块组成。本系统总体结构如图1所示。


    由图1知,CAN通信网络上共有4个通信节点。整车控制器接收BMS、CCS、电机控制器的报文提供的各种参数;充电机接收BMS发送的控制信息并根据报文数据的电压电流设置来工作;电机控制器接收BMS发送的电池状态信息设置来工作,同时电机控制器接收由整车控制器发送的控制信息并根据报文数据的转矩设置来工作。

2 CAN总线节点的硬件电路设计
   
整车控制模块这一节点所实现的功能主要是接收其他节点的数据信息,通过控制算法等进行数据处理,然后发送控制信息给电机控制器,从而实现电动车的正常功能运行。
    整车控制节点是基于STM32F103VE设计的。ARMCortex TM-M3是一款高性能、低成本、低功耗的32位BISC处理器,可在高达72 MHz的频率下运行,拥有512 KB的片内Flash程序存储器,具有64 KB的RAM数据存储器,可进行高性能的CPU访问。该徽控制器包含1个USB2.0全速(12 Mb/s)设备、1路CAN2.0B通道、1个通用DMA控制器、3个16位的A/D转换器和1个16位的D/A转换器。同时该微控制器具有4个16位捕获/比较定时器和1个看门狗定时器,因此ARM cortexTM-M3可以满足电动车控制的需要,减少了系统硬件设计的复杂度。STM32F103VE支持J-Link实时仿真和跟踪,内部搭载有1通道的支持CAN20.B规格的CAN控制器,使得CAN通信模块的设计更加方便。整车控制节点硬件电路图如图2所示,由徽控制器STM32F103VE、CAN总线收发器82C250、2个高速光耦16N137等组成。


    STM32F103VE采用单电源供电,时钟由8 MHz外部晶振产生。对Flash存储器的编程通过J-Link进行编程(IAR)实现。STM32F103VE内部集成一路CAN控制器,简化了传统单片机外接CAN控制器和CAN收发器的复杂外围电路。收发器82C250是CAN控镧器和物理总线之问的驱动器接口,它可以提供对总线的差动发送能力和对CAN控制器的差动接收能力,其位速度高达1Mb/s,与ISO11898标准兼容。它的斜率控制功能使电磁兼容性能增强,准备模式可以减少网络的功耗,准备模式中,网络一旦检测到总线上有报文就会被立即激活。同时,它可提供更强抗干扰能力,以及有热保护、短路保护、支持多达110个节点等好处。
    在微控制器和CAN总线收发器之间,采用了2个高速光电耦合器6N137进行电气隔离,防止将总线干扰引入系统,提高了系统的可靠性。同时,在节点端部接有1个120 Ω终端匹配电阻,提高了数据通信的抗干扰性。[page]

3 CAN通信协议的设计
   
根据ISO/OSI模型,CAN总线规范了只制定了数据链路层中的媒体访问子层和一小部分的逻辑链路控制子层,CAN的ISO标准规定了总线及驱动器的电气特性。因此需要根据自己的需求设计通信协议。
    CAN协议标准2.0B的数据帧的ID长度为29位,为扩展格式数据帧结构,如图3所示。


    数据帧由帧起始、仲裁段、控制段、数据段、CRC段、ACK段、帧结束组成。协议的设计是对标识符和数据位的定义。
    本系统协议的设计参照SAEJ1939协议标准,标识符分配为优先级(P)、保留位(R)、数据页(DP)、代码域(PF)、目标域(PS)、源地址(SA)和数据域(DF)7个部分。根据需求定义了5个报文,报文标识符定义如表1所示。


    整车控制器的节点地址为OxA7;BMS节点地址为OxE4;CCS节点地址为OxE5;电机控制器节点地址为OxE6。
    根据实际需求,设计了5个报文,分别为:BMS发给CCS和电机控制器的2个报文,CCS和电机控制器发给整车控制器的2个报文,整车控制器发给电机的报文。根据信息的重要程度,将电机控制器和整车控制器间的报文设计为最高优先级3,其他报文优先级设计为6。

4 CAN总线节点的软件设计
   
系统采用基于C语言的程序设计。在IAB开发环境下进行调试和仿真。整车控制节点的软件设计主要包括4个部分:CAN控制器的初始化、报文发送、报文接收和错误处理。
4.1 CAN控制器的初始化
   
在启动CAN通信前必需进行CAN模块的初始化,包括硬件使能、CAN工作模式设置、总线波特率设置、设置中断、验收过滤器设置等。初始化操作在CAN模块复位的模式下进行。初始化程序流程图如图4所示。

[page]

 

    本设计中采用的是29位扩展标示符,符合CAN2.0B的标准,所以在验收屏蔽过滤器设置中进行相应的设定。同时,本设计的CAN波特率设置为250 Kb/s,与总线上其他节点的波特率相同,才能进行正常的通信。
4.2 数据的发送
   
对CAN数据的发送采用查询方式,提高处理器的效率,STM32F103VE的CAN模块有3个发送邮箱,发送报文的流程为:应用程序选择一个空发送邮箱;设置标识符,数据长度和待发送数据;对CAN+TixR寄存器的TXRQ位置1,请求发送;邮箱进入挂号状态,等待发送;一旦CAN总线进入空闲状态,发送邮箱中的报文则立即发送,成功发送后,邮箱为空;通过查询CAN_TSR寄存器的TXOK位来查询报文是否发送成功。数据发送程序的流程图如图5所示。


4.3 数据的接收
   
对CAN报文的接收采用中断方式,提高通信的实时性。接收报文的流程如图6所示。当CAN总线发来一个报文,根据屏蔽过滤器设置的标识符进行过滤,如果是要接收的报文,则CAN控制器将总线上的报文按顺序存入接收FIFO,并进入接收中断,在中断中对接收FIFO中的报文进行存储,然后释放FIFO邮箱。如果不释放邮箱,当总线上再发送过来报文时,会直接覆盖上一个报文,从而导致报文丢失。数据接收程序流程如图6所示。


4.4 错误处理
   
电动车的整车控制器需要接收BMS、CCS和电机控制器这3个节点发来的报文,如果超过1 s未接收到例如BMS的报文,则通信链路超时,此时需要进行故障处理。所以在软件设计时,定义一个全局变量,在每个定时周期中加1,在接收BMS报文中断中,对此变量清零,则可以实现通信超时检测。当总线发生严重故障时,CAN节点错误寄存器累积到一定次数时,CAN控制器会关闭总线,节点脱离总线。

5 结论
   
在实车实验中,各个节点可以实现可靠的数据通信,可以实现电动车的加减速和匀速运行。在本电动车控制系统中,设计的CAN通信节点体积小、功耗低、处理能力强、抗干扰性好,能在电磁环境复杂的环境中稳定、可靠地工作。在电动车控制系统中可实现数据的实时快速通信,可靠性强。

 

关键字:CAN总线  电动汽车控制 引用地址:基于CAN总线的电动汽车控制系统设计

上一篇:基于CAN总线的汽车CAN节点测试仪设计
下一篇:Microchip推出模拟电阻式USB触摸屏控制器

推荐阅读最新更新时间:2024-05-02 21:32

基于CAN总线的电工实验指导系统设计
引 言 在生产现场控制系统中,智能设备与常规电气设备的安装、调试与维护需要相当数量的电气技术人员,如何高效、批量、规范地培养高级电气操作人员是教仪厂商急需解决的问题。它要求设备具备 通信 功能,让教师能掌握训练过程的动态指标,从而了解学员的实际实验情况,可对实验过程进行控制,实现分类指导。 本文通过对CAN( 控制器局域网 )协议及其应用的研究,利用CAN通信控制器、CAN收发器以及增强型微控制器等元器件,研制并开发一种基于CAN总线的应用系统--电工实验指导系统,在电工实验室开出网络化实验教学课程,从而改变常规教学方法的不足,让学生更加自主、灵活地完成其实验任务,并可根据自己的情况进行扩展实验,为建立开放性实验实训设施基地打下良
[单片机]
基于<font color='red'>CAN总线</font>的电工实验指导系统设计
基于CAN总线和双传感器仿人机器人运动控制系统研究
一。引言 机器人研究是自动化领域最复杂。最具挑战性的课题,它集机械。电子。计算机。材料。传感器。控制技术等多门学科于一体,是多学科高技术成果的集中体现。而仿人步行机器人技术的研究更是处于机器人课题研究的前沿,它在一定程度上代表了一个国家的高科技发展水平。运动控制系统是机器人控制技术的核心,也是机器人研究领域的关键技术之一,在机器人控制中具有举足轻重的地位,因此,各研究机构都把对机器人运动控制系统的研究作为首要任务。 动作协调。具有一定智能。能实现无线实时行走已经成为当今机器人发展的主题。随着以电子计算机和数字电子技术为代表的现代高技术的不断发展,特别是以DSP为代表的高速数字信号处理器和大规模可编程逻辑器件(以CPLD和FPG
[工业控制]
基于<font color='red'>CAN总线</font>和双传感器仿人机器人运动<font color='red'>控制</font>系统研究
基于CAN总线的工厂电力监测分析网络系统设计
1.引言   由于现场总线(Field Bus)能同时满足过程控制和制造业自动化的需要,因此现场总线的研究与应用已成为工业数据总线领域的热点。尽管目前对现场总线的研究尚未能提出一个完善的标准,但现场总线高性能价格比将吸引众多工业控制系统采用。   工业配电对于工业企业的电网质量和生产的可靠运行至关重要,并对计划用电、节约用电有着重要意义。基于CAN总线的工业配电计算机监测分析网络系统即采用这种性能价格比很高的现场总线技术构成实时状态监测网络系统,其系统构成灵活简单,连线极少,抗干扰能力强,适应性好,易于维护,具有数据处理、分析、运行监测、录波和打印等功能,同时对原有设备未作太多的改动。实用性和可扩展性极强。 2.CAN总线的特
[嵌入式]
基于CAN总线的重型汽车内轮差预警系统设计
1 内轮差原理 内轮差是车辆转弯时的前内轮的转弯半径与后内轮的转弯半径之差。由于内轮差的存在,车辆转弯时,前、后车轮的运动轨迹不重合。内轮差的大小与转动方向盘的幅度和车辆轴距的长短有关,方向盘转动幅度越大即转向角度越大,内轮差越大,反之越小;车辆的轴距越长,内轮差越大,反之则越小。重型汽车车身都比较长,尤其是车头转过去后,还有很长的车身没有转过来,极易形成大型车辆司机的 视觉盲区 ,路人步入内轮范围后,容易造成生命危险。如图1中的阴影部分为内轮差的形成区域。 图1 内轮差示意图 2 超声波预警原理 2.1超声波测距原理 谐振频率高于20KHZ的声波被称为超声波。超声波为直线传播,频率越高,则绕射能力越弱,反射能
[单片机]
基于<font color='red'>CAN总线</font>的重型汽车内轮差预警系统设计
基于Cortex-M3和CAN的印染机同步控制系统设计
随着社会生活的发展,人们对现在的印染品的要求也越来越高,特别是布匹与包装外壳,那么对现代印染工艺的要求也越来越高。随着工艺的增加,对印染设备是个不小的挑战,这里面最主要的是大型印染联合机中多电机的同步控制问题。 在印染设备中,电机的同步控制主要有3方面决定:一是处理器对张力传感器数据的处理速度,以及电机对张力传感器的反应速度;二是不同的电机组之间机械性能的差异以及它们产生的实时同时控制问题;三是控制单元与各电机组之间的通信问题,包括速率,抗干扰等。传统印染联合机的做法是采用单片机加AD/DA芯片进行数据的处理与执行,也有为了提高数据的处理能力而采用DSP加单片机的做法。随着现在技术的发展,在研究了基于ARM的CORTEX-
[单片机]
基于Cortex-M3和CAN的印染机同步<font color='red'>控制</font>系统设计
CAN总线如何防雷?
CAN-bus起源于汽车总线,目前被广泛应用于环境复杂的工业现场,因此必要的总线防护是主板及设备安全的重要保障。今天这里跟说一说CAN总线防雷防护设计。 从广义上讲防雷包含两个概念,一是防雷击二是防浪涌。雷击是雷雨云中电荷瞬间释放的现象,它能在周围引起高能、瞬变的电场及磁场。浪涌包括浪涌电流、浪涌电压,它是指电路中瞬间出现超过正常工作电压、电流的现象,如图1,雷击又可分为直击雷、非直击雷,直击雷是雷电直接作用到物体上,非直击雷则是通过电磁场感生出电动势、电流作用到物体上 ,两者都能产生浪涌电压、浪涌电流。 图1 电压浪涌 CAN总线物理层传输介质一般为铜制双绞线,容易受到电磁场的干扰。CAN收发器属于弱电元器件,对电压
[嵌入式]
<font color='red'>CAN总线</font>如何防雷?
基于CAN总线的智能超声液位变送器设计
  O 引言   现场总线是用于现场仪表与控制系统和控制室之间的一种全分散、全数字化、智能、双向、互连、多变量、多点、多站的通信网络。CAN(Controller Area Network,控制器局域网)是德国Bosch公司在80年代初为解决现代汽车中大量的控制与测试仪器之间的数据交换而提出的一种串行数据通信协议。CAN总线是国际上应用最广泛的现场总线之一,由于采用了许多新技术以及独特的设计,与一般的通信总线相比,CAN总线的数据通信具有突出的性能,且可靠性、实时性和灵活性强。   近些年来,随着超声技术研究的不断深入,再加上其具有的高精度、无损、非接触等优点,超声的应用变得越来越普及。超声波液位测量有许多优点:检测元件可以不与
[嵌入式]
车载CAN总线记录仪的大容量存储系统设计
引言     CAN(Controller Area Network,控制器局域网)总线是德国Bosch公司在20世纪80年代初,为了解决现代汽车中众多的控制与测试仪器之间的数据交换而开发的一种串行数据通信协议。它的短帧数据结构、非破坏性总线性仲裁技术以及灵活的通信方式适应了汽车的实时性和可靠性要求,倍受汽车生产厂商的青睐。随着汽车电子技术的发展,汽车上的ECU(Electronic Control Unit,电子控制单元)越来越多,如电控燃油喷射系统、防抱死制动系统、防滑控制系统等,相应的数据量也越来越大,如何采用合理的存储方案是记录仪等大容量存储系统的关键。本文详细阐述了大容量存储系统系统的整体结构、硬件电路设计。利用
[嵌入式]
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved