应用CPLD和DSP的人机接口模块设计

发布者:SereneVoyage最新更新时间:2011-09-23 关键字:CPLD  DSP  人机接口 手机看文章 扫描二维码
随时随地手机看文章
  路面剪切实验机是用于测量路面结构层与路面层之间剪切力的一种试验仪器,市面已有的成熟产品,大多以单片机为控制核心器件,无法实现精确测量的目的。DSP作为新型控制器,早已有很多成熟的应用,尤其是其中的LF2407A特别适合电动机控制并能实现数据采集等功能。

  介绍一种基于CPLD和TMS320LF2407A型DSP的人机接口模块应用系统,这种系统在新型路面剪切实验机上得到了较好的应用,能够很好地实现数据采集、电动机调速等目的。以CPLD为桥梁,实现快速DSP和慢速外设的接口模块设计,并给出其硬件电路原理图。

  CPLD选择及其扩展模块的设计

  由于 DSP属于高速器件, LCD为慢速外设,DSP对读写周期较慢的 LCD进行访问,可采用以下两种方式来解决 DSP与 LCD的时序匹配问题:直接访问和间接访问。直接访问是将 DSP的读写信号与 LCD接口的读写信号直接相连,将 LCD的 8位数据线与 DSP的低 8位数据线相连(在 CPLD内部硬件编程完成),时序由 DSP内部读写逻辑控制。由于 LCD的读写周期较 DSP慢,要使两者的时序匹配,还必须进行一些时序方面的处理。间接访问用 DSP的 I/O口间接控制慢速设备,可以通过软件控制 DSP的 I/O口来实现与慢速外设的时序匹配。该方法无需通过硬件扩展即可实现与任意慢速外设的时序匹配。在该显示系统中,由于 CPLD的可在线硬件编程能力,这 2 种方法均可实现。这里采用第一种接法。 DSP与 LCD的硬件接口电路图如图 1所示。

  CPLD硬件结构设计如图所示

  

 

  CPLD的设计主要是利用CPLD对键盘、液晶和各种状态指示灯进行控制。由于TMS320LF2407A的I/O管脚和各种特殊功能是复用的,如果将键盘、LCD显示以及各种状态指示灯直接和DSP相连的话,这将造成它的极大浪费,所以我们在它们中间用CPLD作为桥梁。

  另一更为重要的原因是键盘和LCD显示是在一个相对较低的速度下实现的,这对于高速数据处理的DSP来说是无法接受的,我们设计的主要用意是:

  对于LCD显示,我们将DSP中的数据发送到CPLD,然后DSP去做其他的事情,而后续显示的任务由CPLD完成,CPLD将在LCD允许的速度下对其进行操作即可达到显示目的。

  对于键盘,我们将键盘的各种处理进行完之后通过中断来通知DSP,然后DSP进行取数操作,这样的话并不会影响到整个系统的运行速度。

  液晶显示模块硬件设计

  由于LCD具有低功耗、体积小、质量轻、超薄等诸多其他显示器无法比拟的优点,它广泛用干各种智能型仪器和低功耗电子产品中。对于数据采集系统来说,液晶显示模块主要功能是显示系统的采样速率及试样所受的应力值。为了解决快速DSP和慢速外设之问接口的问题,根据上述分析系统采用了以CPLD为桥梁的液晶显示模块。其主要的工作流程是:DSP把显示的数据送给CPLD,然后DSP去做其他的事情,而后续显示的任务将在LCD允许的速度下得到显示。

  液晶显示模块选择

  数显液晶模块:这是一种由段型液晶显示器件与专用的集成电路组装成一体的功能部什,只能显示数字和一些标识符号。

  液晶点阵字符模块:它由点阵字符液晶显示器件和专用的行列驱动器及必要的连接件、结构件装配而成,可以显示数字和西文字符,一般本身具有字符发生器。这种模块的点阵排列是由5×7成5 x 8,5×1的一组像素点阵排列而成的。每组为一位,每位间有一点间隔,每行间也有一点的间隔,所以不能显示图形。

  直剪仪数据采集系统的显示特点是不仅能显示模拟拉剪的过程,也要能显示中文、西文操作菜单和各种测量数据,所以以上两种液晶显示模块均不符合本仪器的显示要求。

  我们选用的是大连东福的EDM240128F点阵图形LCD。它的最大特点是具有独特的硬件初始值设置功能,显示驱动所需的参数如占空比系数。驱动传输的字节数/行及字符的字体选择等均由引脚电平设置,这样初始化在上电时就已经基本设置完成,软件操作的主要精力就可以全部用于显示画面的设计上了,可以图形方式、文本方式及图形和文本合成方式进行显示,以及文本方式下的特征显示,还可以实现图形拷贝操作。它采用T6963C内核控制器,图2为液晶显示模块硬件设计的原理图。

  

 

  电平转换芯片的选择

  由于CPLD为3.3V的器件,而LCD是5V的器件。所以为了CPLD和LCD之间的电平匹配,需要借助电平转换芯片来完成从3.3v到5V之间的相互转换。选择的电平转换芯片是TI公司的SN74LVC4245A芯片,这个芯片的数据传输方向是双向的,在引脚DIR的作用下,既可以实现从3.3v向5v转换,也可以实现从5v向3.3v转换。

  为了液晶模块能够正确的工作,液晶需要上电复位。本设计中采用的字体是8×8点,所以在硬件电路设计时将FS引脚拉低。

  在硬件设计时,我们需要注意的问题是:

  (1)在VDD对地(Vss)间接0.1u左右电容去耦,接10u或20u电容滤波;

  (2)模块的复位脚/RST接一个复位电路,而且我们也将/RST与CPLD相连,这样我们也可以利用DSP对其进行复位,使得可以是液晶进行定时刷新,预防一些其他干扰;

  (3)在做实验时,FG(铁框地线、不能悬空,暂时与数字地连接。

  键盘硬件设计

  键盘在信号采集系统中是一个很关健的部件,它能向系统输入数据、传送命令等功能,是人工干预系统的主要手段,本系统所用键盘是常用的4×4矩阵式键盘。

  16个键盘有0~9数字键,上翻,下翻键,编程键,输入键,擦除键,点号健等。键盘的行线和列线分圳连接CPLD的一个I/O引脚。键盘的行线上有一个2.7k的上拉电阻将行线所连接的CPLD的I/O引脚上拉直高电平。

  

 

  图3为键盘设计的硬件原理图。

  键盘工作原理

  按键设置在行、列线空点上,行、列线分别连接到按键开关的两端。行线通过上拉电阻接到3.3v上。平时无按键动作时,行线处于高电平状态,而当有按键按下时,行线的电平状态将由与此行线相连的列线电平决定。列线电平如果为低,则行线电平亦为低,列线电平如果为高,则行线电平亦为高。这一点是识别矩阵键盘按键是否按下的关键所存。由于矩阵键盘中行、列线为多键共用,各按键均影响该键所在行和列的电平。因此各按键彼此将互相影响,所以必须将行、列线信号配合起来并作适当的处理,才能确定闭合键的位置。

  结语

  本文作者创新点:以 DSP为核心处理器,利用 CPLD来进行逻辑转换和控制,实现高速CPU处理器和低速外设接口的时序匹配,同时采用了移植性能和可读性能高的 C程序设计,无需插入等待周期,在实际的嵌入式系统中成功运行,为快速处理器与慢速外设的接口设计提供了一种借鉴的方法。

关键字:CPLD  DSP  人机接口 引用地址:应用CPLD和DSP的人机接口模块设计

上一篇:基于现场总线监测系统的PLC控制制造系统
下一篇:浅谈交流伺服系统脉冲接口抗干扰能力的几种典型接口方法

推荐阅读最新更新时间:2024-05-02 21:36

东芝选用Cadence Tensilica Vision P6 DSP 提高ADAS芯片的图像识别性能
(图片来源:Cadence官网) 据外媒报道,东芝为其下一代汽车SoC选用Cadence Tensilica Vision P6 DSP IP,以满足功能安全要求。该数字信号处理器IP具有计算吞吐量高、功耗低、芯片核心区小的特点。此外,它已通过认证,能满足汽车应用的典型功能安全要求。Cadence表示,Vision P6 DSP的功效效率比CPU高3.8倍,处理能力高达 1024 GOPS,可作为卸载引擎,有效处理视觉和AI工作负载,满足精确检测和识别目标需求。 Tensilica生态系统是东芝选择的决定性因素。这家日本芯片制造商已将Cadence Xtensa Imaging Library(Xi-Lib)集成到其
[汽车电子]
东芝选用Cadence Tensilica Vision P6 <font color='red'>DSP</font> 提高ADAS芯片的图像识别性能
LG 电子选择CEVA图像和视觉DSP用于移动设备
针对先进智能互联设备的全球领先信号处理IP授权许可厂商CEVA公司宣布LG 电子 (LG Electronics) 获得CEVA图像和视觉 DSP授权许可,用于其移动设备产品系列中。 CEVA首席执行官Gideon Wertheizer表示: 我们很高兴宣布LG 电子公司成为CEVA图像和视觉DSP产品的客户,该公司在移动技术前沿的创新性上拥有市场领导地位和卓著声誉,能够全面利用我们的DSP,为其移动设备增添功能丰富并且基于视觉的差异化优势。 CEVA图像和视觉DSP用于满足最复杂的计算图像学和计算机视觉应用的极端处理需求,比如视频分析、增强现实和高级辅助驾驶系统 (ADAS)。通过从CPU和GPU分担这些运算性能密集
[手机便携]
LG 电子选择CEVA图像和视觉<font color='red'>DSP</font>用于移动设备
基于DSP的低功耗高速数据采集系统
摘要:介绍了自行研制的基于DSP的低功耗数据采集系统。该系统以TMS320C5509为核心,实现了低功耗四通道同步高速数据采集。从同步ADC采集、存储器设计、DSP时钟设计以及电源设计等方面,详细阐述了基于低功耗的设计思想和实现方法。 关键词:DSP 低功耗 数据采集 随着电子技术的发展及新器件的不断涌现,电子系统在手持设备、便携医疗仪器以及野外测试仪器等领域得到了广泛的应用。在这些领域的应用中,由于客观条件的限制,通常采用电池或蓄电池为仪器设备提供电源。在这种情况下,如要实现系统长时间工作,必然对仪器设备系统功耗的要求较高,因此低功耗系统的设计在这些应用领域中得到广泛重视。 1 TMS320VC5509简介 TMS
[应用]
基于DSP的弧焊逆变电源数字化控制系统
弧焊逆变电源(亦称弧焊逆变器)是一种高效、节能、轻便的新型弧焊电源。目前,采用ICBT作为功率控制器件来提高功率主电路的控制性和稳定性,以8位和16位单片机作为控制核心进行焊接程序控制和焊接参数运算处理,提高了弧焊逆变电源的操作性。数字信号处理器(DSP)的广泛普及和应用,为弧焊逆变电源控制系统的全数字化提供了必要的硬件和软件基础。 DSP与单片机性能比较分析 单片机(MCU)广泛应用于家用电器、工业控制和智能终端,主要起控制作用。DSP可高速地实现过去由软件实现的大部分算法。表1比较了典型单片机和DSP的性能指标。 由表1可知,与单片机相比,DSP的优势表现为:数据处理能力强、高运算速度、能实时
[嵌入式]
利用FPGA的DSP功能提高图像处理的实例分析
intevac是商用和军用市场光学产品的前沿开发商。本文介绍该公司nightvista嵌入式电子系统的开发,该产品是高性能超低亮度紧凑型摄像机。该摄像机最初采用了流行的数字信号处理器、几个assp和外部存储器件。系统对性能的需求越来越高,工程师团队决定试验一种替代方案——在可编程逻辑中实现可配置软核处理器。这一决定带来了以下好处: 达到了目标所要求的性能 在单个fpga中集成了分立的元件和数字信号处理(dsp)功能 功耗降低了近80% 将五块元件板缩减到一块,显著降低了成本 缩短了开发时间 图1 intevac nightvista摄像机中cyclone系列fpga功能框图   dsp基于处理器的实现方法   n
[嵌入式]
基于DSP的精密半导体激光驱动电源系统
引言   目前,半导体激光(LD)已广泛应用于通信、信息检测、医疗和精密加工与军事等许多领域。激光电源是激光装置的重要组成部分,其性能的好坏直接影响到整个激光器装置的技术指标。本设计采用受DSP控制的恒流源来为半导体激光器提供电流,在电路中,利用负反馈原理,控制复合功率调整管输出电流,以达到稳定输出电流的目的。该系统采用电路设计和程序控制算法设计相结合的方法,从多方面对半导体激光器的工作状态进行实时检测和控制,使系统的性能得到很大的改善和提高,有效解决了半导体激光器工作的准确、稳定和可靠性问题,进一步提高了半导体激光器的输出指标。 系统原理   要使激光器输出稳定波长的激光,则要求流过激光器的电流非常稳定,
[应用]
基于ARM Cortex-M3和DSP的逆变电源设计
引 言 在电气智能化发展无处不在的今天, 无数用电场合离不开逆变电源系统( Inverted Pow er Supply System,IPS) 为现场设备提供稳定的高质量电源, 特别在如通信机房、服务器工作站、交通枢纽调度中心、医院、电力、工矿企业等对电源保障有苛刻要求的场合。许多IPS产品因遵循传统设计而不符合或落后于现代电源理念,突出表现为控制模块的单一复杂化, 控制器芯片落后且控制任务繁重, 模拟闭环控制而得不到理想的监控和反馈调节效果,并由此带来单个控制设备软硬件设计上的隐患, 这对IPS 电源输出造成不利影响, 甚至对用电设备因为供电故障而导致灾难性后果。数字化控制技术日趋成熟,而且在某些领先理念的电源设备控制应用场
[单片机]
基于ARM Cortex-M3和<font color='red'>DSP</font>的逆变电源设计
32位DSP两级cache的结构设计
1 引言   随着半导体技术的发展,DSP性能不断提高,被广泛应用在控制,通信,家电等领域中。DSP内部核心部件ALU具有极高的处理速度,而外部存储器的速度相对较低,存储系统已成为制约DSP发展的一个瓶颈。本文参照计算机存储结构,利用虚拟存储技术,对存储系统的结构进行了改进。在DSP中引入二级Cache存储器结构,在较小的硬件开销下提高了DSP的工作速度。结合高性能低功耗DSP cache设计这个项目,对两级cache的结构和算法做了探讨。   2 cache总体设计   传统的存储器主要由Dram组成,它的工作速度较慢,cache存储器主要由SRAM组成。在DSP中,存储系统可分层设计,将之分为两部分:容量较小的cache
[模拟电子]
32位<font color='red'>DSP</font>两级cache的结构设计
小广播
热门活动
换一批
更多
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

更多精选电路图
换一换 更多 相关热搜器件
更多每日新闻
随便看看
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved