基于ARM-LPC2368的网络接口的设计与实现

发布者:sokaku最新更新时间:2011-10-11 关键字:ARM-LPC2368  网络接口 手机看文章 扫描二维码
随时随地手机看文章
        本文以微处理器LPC2368为核心、DP83848C为以太网物理层接口芯片,详细地介绍了嵌入式以太网接口的实现方法。 

       首先对微处理器LPC2368和物理层芯片DP83848C作了简单的介绍,然后给出了基于LPC2368的以太网接口的硬件设计,最后简述了其软件的实现过程。

        1 引言

        随着Internet技术的迅速发展,人们对信息共享的要求也不断提高。目前,嵌入式系统已经渗透到我们生活的每个角落,它与网络的完美结合,为我们共享信息提供了很大的便利。PHILIPS公司的LPC2368是一款优秀的微处理器,基于它的嵌入式系统如果没有以太网接口,那么其应用价值也就会大打折扣。因此,就整个系统而言,以太网接口电路应是必不可少的,但同时也是相对较复杂的。

        以太网接口电路主要由MAC控制器和物理层接口(Physical Layer,PHY)两大部分构成。LPC2368内嵌一个以太网控制器,支持精简的媒体独立接口(Reduced Media Independent Interface,RMII)和带缓冲DMA接口(Buffered DMA Interface,BDI),可在半双工和全双工模式下提供10M/100Mbps的以太网接入。因此,LPC2368内部实际上己经包含了以太网MAC控制,但并未提供物理层接口,所以,需要外接一片物理层芯片以提供以太网的接入通道。在这里选用National Semiconductor公司的DP83848C作为以太网物理层接口芯片,它提供了包括MII/RMII/SNI接口,可以很方便地与LPC2368连接。 

        2 LPC2368 和 DP83848C 的介绍

         2.1 微处理器LPC2368

        LPC2368是基于ARM7TDMI-S内核的32位微控制器,可在高达72MHz的频率下操作,其功能强大且成本效率高,支持 10/100Ethernet、全速(12Mbps)USB 2.0 和 CAN 2.0B;具有高达512KB的片内Flash、58KB的SRAM、10 位 A/D 和 D/A 转换器和一个 IRC 振荡器,还带有 SD 存储卡接口可供选择,100引脚LQFP封装(14×14×1.4mm)。广泛应用于工业控制、POS系统、协议转换、加密系统等领域[1]。

        2.2 物理层芯片DP83848C

       DP83848C是一个10/100Mb/s单端低功耗物理层器件,有几种智能降功耗模式,包括有25MHz时钟输出,很容易通过外接变压器和双绞线媒体接口;支持两种IEEE 802.3u MII和RMII Rev 1.2,方便了设计;集成的亚层支持10BASE-T和100BASE-TX以太网协议;低功耗小于270mW、3.3V MAC接口;可配置的SNI接口;48引脚LQFP封装(7x7mm)。DP83848C作为一种以太网物理层收发器,广泛应用于高端外围设备、工业控制和工厂自动化操作、通用的嵌入式应用领域[2]。 

        3 硬件部分设计

         3.1 电路框图

        LPC2368与DP83848C连接比较简单,直接通过RMII接口连接即可。连接好后,DP83848C再通过网络隔离变压器和RJ45接口接入传输媒体,其电路框图如图1所示。


       3.2 以太网接口实际电路原理图设计

       DP83848C支持几种MAC接口方式:(1)MII;(2)RMII (Reduced MII);(3)10 Mb 串行网络接口(Serial Network Interface,SNI)。在这里我们使用的是RMII接口方式,通过设置引脚pin39和pin6来确定,如表1所示。

      表 1 : MII 方式选择

      MII_MODE (pin39)

      SNI_MODE (pin6)

      MAC Interface Mode

      0

      0或1

      MII Mode

      1

      0

      RMII Mode

      1

      1

      10 Mb SNI Mode

       由表1可以看出,pin39应接上高电平,pin6应接上低电平。同时因为在芯片内部pin6下拉,默认为0,所以只要设置pin39接上高电平即可,这样微处理器LPC2368就可以同PHY芯片DP83848C通过RMII接口方式连接。它们之间通过RMII接口连接,芯片和控制器连接所使用的引脚数目会比较少,且数据传送速率是每次2位,即频率50MHz,所以需要一个50MHz的晶体振荡器连接到pin34 X1脚。

         在RMII方式下,主要使用到的引脚有:1串行管理:MDC(pin31)、MDIO(pin30); 2MAC数据:TX_EN(pin2)、TXD[1:0](pin4 pin3)、RX_ER(pin41)、CRS_DV(pin40)、RXD[1:0](pin44 pin43); 3时钟:X1(pin34 ,RMII 参考时钟是50MHz)、X2(pin33)。[page]

          Pin27置高使得DP83848C以100Mbps的速率工作, LED显示DP83848C的工作状态。16ST8515为网络隔离变压器,其主要是起信号传输、阻抗匹配、波形修复、杂波抑制以及高电压隔离等作用,以保护系统的安全。通过protel 99 SE画出电路原理图如图2所示。

       软件的实现主要有三个部分:系统的初始化、数据的发送和接收。

       初始化部分完成以太网接口在使用之前的初始化工作,主要包括设置相关的寄存器、分配和初始化发送与接收缓冲区等。

       在网络接口层对应的数据包是完整的以太网帧格式的,因此要实现数据的发送和接收就必须按以太网IEEE802.3协议来进行,该协议所定义的帧结构如表2所示。

       每个网卡在出厂的时候有个全球固定的物理地址(MAC地址)。当总线上的一个节点发送一个数据帧,总线上其他的网络节点都拷贝该数据帧,每个节点检查数据帧的目的物理地址,如果和自己的物理地址匹配的话,该节点的网卡就接受该数据帧传给上层协议处理,反之如果不匹配,该节点就丢弃数据帧。

        采用中断的方式发送和接收数据。

        发送数据帧:将要发送的数据封装成以太帧,并写入发送缓冲区;检测网络中有无数据在传送,即上一个帧是否发送完毕,如果网络中仍有数据在传送,则暂时不能发送帧,若网络中没有数据,则可以立即发送此帧;在发送该帧时,可同时封装下一个数据帧,并将其写入第二个发送缓冲区;当中断服务程序检测到第一个数据帧发送完毕时,则可发送下一个数据帧。重复以上过程,直到所有数据帧都发送完毕。发送数据帧的流程图如图3所示。

       接收数据帧:等待直到有数据帧到达,将此数据帧保存到FIFO缓存中,然后察看该数据帧的目的地址,若为NIC的MAC地址或广播地址,并且经检验没有出错,则把此数据传送到接收缓冲中,并向处理器提出中断,将接收到的数据帧从 NIC本地缓存连续读人到系统内存中。接收数据帧的流程图如图4所示。

        图3 发送数据帧流程图

图4 接收数据帧流程图

        本文讲到了利用微处理器LPC2368和PHY芯片DP83848C来设计以太网接口。由于微控制器LPC2368和物理层芯片DP83848C的优良性能,使得该接口电路具有结构简单、体积小、功耗低等许多优点,是实现嵌入式系统与网络连接的微处理器LPC2368,通过精简的媒体独立接口与物理层芯片进行连接,在保证同样功能的情况下,使得布线更加简单,可以大大减小设计时的出错率。

 

 

关键字:ARM-LPC2368  网络接口 引用地址:基于ARM-LPC2368的网络接口的设计与实现

上一篇:基于ARM嵌入式系统的PC/104总线设计
下一篇:基于虚拟仪器的车载CAN总线监控系统开发

推荐阅读最新更新时间:2024-05-02 21:38

手持式RFID读写器网络接口设计
  摘要:为适应RFID 读写器在不同应用系统中的要求,开发了一种以MSP430F149 单片机为核心的具有嵌入式以太网网络接口的手持式RFID 读写器。文中介绍RFID 读写器中单片机与以太网控制器RTL8139 组成的网络接口设计方法,实现了手持式RFID 读写器接入Internet 网络进行数据通信。   RFID 技术目前广泛应用于身份识别、防伪应用、供应链应用、公共交通管理、物流管理、生产线自动化与过程控制、容器识别等领域。由于手持式RFID读写器的存储器容量有限,保存在读写器中的数据可以通过USB 等接口传送到计算机中进行处理,但为更方便快捷地将读写器中的数据传送到远程的计算机系统中,将便携设备网络化是解决上述问题
[单片机]
手持式RFID读写器<font color='red'>网络</font><font color='red'>接口</font>设计
VxWorks环境下双冗余以太网卡技术在底层驱动中的实现
引 言  随着以太网的稳定性、抗干扰性和带宽问题的逐步改善,以太网正在大规模进入工业控制领域。用于工业过程控制、通信、航天器和导航系统中的网络对可靠性及其响应故障的快速性要求极高。当前,冗余设计作为一种提高设备可靠性的有效方法,已经得到了广泛的应用。对于网络系统中的单个节点,常常需要对网卡进行双冗余备份,即每个节点都采用2块网卡(或2个网口),中间用集线器或交换机互连,当正常通信的网卡或线路出现故障时,该节点能自动地切换到备份网卡进行通信。图1为冗余网络的一种典型联接形式。  具有双冗余网卡的节点虽然有2块网卡,2条通道,但对于高层应用系统来说,仍呈现单网卡的特征。具体来讲,2块网卡共有1个物理地址,1个IP地址。根据 TCP/IP
[嵌入式]
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved