模糊控制在基于CAN总线的数据采集与控制系统中的应用

发布者:数字航海家最新更新时间:2011-11-24 关键字:CAN总线  数据采集  模糊控制 手机看文章 扫描二维码
随时随地手机看文章
  L.A.扎德教授于1965年创立的模糊集合理论(Fuzzy Sets)及模糊数学(Fuzzy Mathematics)为模糊逻辑控制的形成提供了理论基础。近年来,随着各企业生产规模的不断扩大,生产过程控制系统也变得越来越复杂。由于整个系统的非线性增强、时滞增大,而且不是系统中的每个环节都需要建立精确的数学模型,使得模糊逻辑控制在生产过程中的应用成为可能。随着模糊控制的迅速发展,不需要对控制对象建立精确数学模型的模糊控制方法已进入实用化的阶段,它主要是把对被控系统的熟练的操作经验转换成模糊规则。现场总线的出现,为复杂现场采用模糊控制技术进行直接控制提供了很好的途径,也使模糊控制算法可以利用现场总线的强大网络功能实现集中化管理,而对各个现场部分实现分散控制。下面介绍一种基于CAN总线的运用模糊控制技术的数据采集与控制系统。

  1 CAN总线的特点

  CAN总线最早由德国的BOSCH公司提出,它具有以下性能:

  (1) 多主方式工作,非破坏性的基于优先权的总线仲裁技术;

  (2) 采用短帧结构,受干扰概率低,每帧信息都有CRC校验及其它检错措施;

  (3) 对严重错误具有自动关闭总线功能,使总线其它操作不受影响;

  (4) 灵活的传输介质,多样、快速和远距离的信息传送方式。

  基于CAN总线的以上特点,我们设计了一种采用CAN总线技术和模糊控制技术的控制系统,其结构框图如图1所示。



  2 模糊控制器的设计

  模糊控制器的设计主要是设定各输入与输出变量模糊子集的隶属函数?模糊变量的量化论域、模糊控制规则、输入输出变量的比例变换因子等参数。常规模糊控制器的输入是将连续信息经量化因子量化成几个等级后的数据,但因不能把输入论域无限细分,只能划分为有限的几个等级,且由于系统没有积分环节,所以在系统的平衡点附近容易产生振荡或出现极限环。针对常规模糊控制器不能消除稳态误差的情况,我们设计了一种智能型模糊控制器,其结构图如图2所示。


  该模糊控制器与常规模糊控制器的不同之处就是在控制规则库上并联了一积分环节以减少或消除系统的稳态误差。其控制规则可根据系统的控制响应曲线来获得,为了使系统输出尽快跟踪输入且使系统误差在允许的精度范围内,采用了分段引入积分环节。在系统响应曲线偏离平衡点即系统误差趋势增大时,引入积分作用;而在系统响应曲线从偏离点趋向平衡点即系统误差趋势变小时,取消积分作用。并且K值的大小要适中,过大会使系统振荡,过小体现不了积分作用。此设计思想可写成如下表达式形式:


  其中,f(e,ec)为模糊控制规则部分的输出,K∫Edt为积分环节的输出。

  由图2可知,该模糊控制器的输入为系统的偏差e和偏差变化率ec,输出为控制量的增量Δu;ke、kc为量化因子,ku为比例因子;E、EC、ΔU分别为e、ec和Δu的模糊语言变量。输入、输出变量被划分为正大(PL)、正中(PM)、正小(PS)、零(ZO)、负小(NS)、负中(NM)、负大(NL)7个模糊状态,其相应论域为{-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6}13个等级。在充分考虑到控制系统的非线性?大时滞等情况下,根据专家先验知识和现场熟练操作者总结出来的操作经验,我们得出如下的控制规则,如表1所示。





  系统输入变量的隶属函数采用三角形隶属度函数,模糊判决采用最大隶属度原则,积分环节的加入与否由式(1)决定,若加入积分环节则合并该分量得到相应的控制增量Δu。

  3 模糊控制算法实现

  3.1 硬件实现

  考虑到大规模过程控制系统的分散性和信息的多样性,采用了现场总线中的CAN总线把各个子系统有机地联系起来,实现了集中管理和对各现场设备实时?有效的控制。其硬件电路图如图3所示。


  现场控制单元以AT89C51芯片为核心,主要负责对现场设备状态的显示与报警、对采集来的数据进行处理和对SJA1000进行操作、控制。其中SJA1000为CAN总线微控制器,主要把从AT89C51来的信息以CAN总线协议的格式发送到CAN总线上以供其它部分使用,并从CAN总线上接收有用信息提供给AT89C51作进一步的处理。本系统的A/D和D/A转换电路分开设计主要是因为一个大系统下的各个子系统之间是有联系的,某一子系统采集到的数据可能正是另一子系统作进一步处理的依据,而不是自身的需要。这样,就使各智能单元之间数据通信更为方便、快速,也便于上位机管理。该硬件电路中采用了DC-DC转换电路和多种光电隔离器件,采用了看门狗(Watchdog)复位技术,其目的主要是为了防止现场干扰信号过大而破坏核心电路以及保证系统在环境比较恶劣的情况下也能正常运行。

  3.2 软件实现

  系统软件所实现的功能为:采样n时刻A/D转换输出值,与系统设定值和上次采样值e(n-1)比较得n时刻偏差e(n)和偏差变化率ec(n);选择合适的量化因子ke和kc,由相应的模糊化规则得到模糊值E(n)和EC(n);分析E(n)和EC(n)的变化趋势以确定是否加入积分环节。然后,根据E(n)和EC(n)的值直接查程序存储器内的模糊控制总表或进行积分运算得到模糊控制增量。最后,对加入或不加入的模糊控制增量采用最大隶属度原则进行模糊判决,选择适当的比例因子ku得到控制增量Δu,计算Δu+u(n-1)的值,即可得n时刻的控制量。该值可通过CAN总线传送给其它智能单元,进行D/A转换后即可控制现场设备或上位机做进一步的处理以协调整个系统各控制单元的正常、有效的运行。智能控制单元在处理以上任务的同时还要完成与CAN总线数据通信和对现场设备的状态显示与报警。由离线方式计算出的模糊控制总表可以直接以矩阵的形式写入芯片内部程序存储器,其软件设计流程如图4所示。


  4 仿真实验

  针对以上描述的模糊控制算法和控制系统设计思想,我们选择某一被控系统做了仿真实验。该被控系统的传递函数为:。从系统的传递函数可以看出,该系统非线性较强、纯滞后大(T=1s);对纯PID控制算法和本论文讨论的模糊控制算法的阶跃响应曲线如图5所示。


  其中,曲线1是在kp=1、kc=0.2和kd=1.25参数下纯PID控制的系统响应曲线,曲线2是在ke=48、kc=80和ku=7情况下采用模糊控制算法的系统响应曲线。从系统控制响应曲线2来看,由于该模糊控制器采用了纯模糊控制算法和加入积分环节相结合的方案,在系统响应偏离平衡点较远时,只有模糊控制的作用,响应速度很快,曲线斜率大;而当响应接近平衡点且有偏离趋势时,由于加入积分环节,曲线变化速率变慢,几次作用后,系统响应最后在平衡点附近稳定或到达平衡点。与纯PID控制器算法相比,它具有算法简洁、响应速度快等特点。同时要使系统达到快速响应且无超调,在参数选择上是矛盾的,只凭固定的参数ke、kc和ku很难达到要求。因此,ke、kc和ku参数的选择可以根据E和EC的变化而调整以达到提高系统的稳态精度的目的,这样整个控制系统既能达到控制的快速性,同时还能实现减少或消除系统稳态误差的效果。

  模糊控制和现场总线是近些年控制领域向智能化、全面化、快速化方向发展而建立起来的两门新技术;把智能控制与现场总线结合起来是以后工程控制中的主要应用方向。从整个控制系统的设计过程和仿真结果来看,系统的硬件结构相对比较简单,软件实现方便,系统控制效果理想,实时性好。

关键字:CAN总线  数据采集  模糊控制 引用地址:模糊控制在基于CAN总线的数据采集与控制系统中的应用

上一篇:基于Verilog HDL的I2C总线分析器
下一篇:主机接口(HPI)在嵌入式系统中的应用

推荐阅读最新更新时间:2024-05-02 21:44

超低功耗低测量频率数据采集记录系统的设计
1 引 言   在诸如环境监测、气象监测中,常常需要长时间地采集记录变化缓慢的过程。这对数据采集记录系统提出了低测量频率、低功耗、微型化和可与计算机联接的要求,以适于电池供电、现场化安装以及便于计算机存储和分析。传统的基于微控制器A/D采样芯片外部存储器的系统有功耗大、集成度低等缺点。为克服这些缺点,我们以AD公司数据采集器芯片AD C812为核心,采用多种方法有效地提高了系统集成度并大幅度降低了功耗。由于采用了在线可编程技术,系统软件在线修改成为可能,系统能通过装入不同的程序很好地适用于多种应用场合。   本文介绍的系统由采集记录器、上下载器和系统软件三大部分构成,采集记录器由电池供电,安装于现场,可脱离系统按程序自动完成数据的采
[单片机]
超低功耗低测量频率<font color='red'>数据采集</font>记录系统的设计
基于CC430F5137的低功耗无线数据采集节点设计
引言 随着集成电路、无线通信技术和嵌入式技术的发展,无线通信网络也应运而生,无线传感网络具有低功耗、低成本、分布式和自组织的特点。 传统的无线射频通信模块体积大,需要控制芯片来控制射频模块,这就增加了设计的成本,而且可移动性不好。 半导体技术的不断进步使处理器芯片可以被集成为体积很小的一块,而价格变得更便宜,专用的无线网络芯片和技术也得到发展。文中采用了 TI 公司的 CC430F5137 设计并实现了一种应用于无线网络中的节点模块。 CC430F5137 是一款内部集成了射频核的芯片,它内置了射频核,使用单颗芯片就可以完成数据的采集、处理、发送与接收,使电路板的体积可以变得更小、更便宜。为了实现网络节点的低功耗 设计,本文采用了
[电源管理]
基于CC430F5137的低功耗无线<font color='red'>数据采集</font>节点设计
利用直接时钟控制技术实现存储器接口数据采集
提要 本应用指南介绍了在 VirtexTM-4 器件中实现存储器接口的直接时钟控制数据采集技术。直接时钟控制方案利用了 Virtex-4 系列所独有的某些架构特性(例如,每个 I/O 模块 (IOB) 中均具备一个 64-tap 的绝对延迟线)。 简介 大多数存储器接口都是源同步接口,从外部存储器器件传出的数据和时钟/ 选通脉冲是边沿对齐的。在 Virtex-4 器件采集这一数据,需要延迟时钟/ 选通脉冲或数据。利用直接时钟控制技术,数据经延迟,并与内部 FPGA 时钟实现中心对齐。在这个方案中,内部 FPGA 时钟采集传出的数据。存储器传出的时钟/ 选通脉冲用于决定与数据位相关的延迟值。因此,与选通脉冲相关的数据位的数量不
[工业控制]
关于如何让初学者形象理解CAN总线技术关键点的思考
在汽车CAN总线教学中,我们往往不能很好的向初学者形象介绍各种专业知识。虽然技术术语可以让我们显得“专业”,但是针对对这些术语不了解的初学者,那可能会造成授课与听课理解的障碍,达不到需要的教学效果。在这里,我们讨论一下关于can—bus教学中的部分技术术语形象化教学的可能性。 总线阻抗匹配:在CAN总线通信的物理链路层,我们需要更好的总线阻抗匹配,才可以更好的传输数据;总线匹配不好,可能会造成信号的衰减和末端信号反射,造成对正常信号的干扰;就如人与人在说话时候,由于声音的传输介质(如空气稀薄等)不适合或周围的障碍物造成的回音与正在说的话的叠加,对听众造成接收障碍一样。所以我们需要对总线进行阻抗匹配,避免造成信号衰减和反射震荡,总线匹
[嵌入式]
基于PIC16F877单片机的井下压力测量技术研究
目前,我国油井主要采用的是电子式井下压力测量系统,由于电子压力传感器长期工作在高温环境中,所以存在漂移问题,而且可靠性不高。同时这种仪器大多数将采集的数据存储在存储器中,缺乏实时性测量的要求。而本文所介绍的井下压力采集系统是一种新型的压力测量系统,其主要是以惰性气体作为压力传递介质,在地面完成对井口气体压力的测量,然后通过井口压力的大小推算井下测压点处压力大小。其主要特点是所有的测量都在地面上进行,避免了井下复杂环境对测量结果造成的影响,同时也满足了系统的实时性要求。 1 井下压力测量系统工作原理 井下测压系统的基本原理是帕斯卡定理。整个套管设备在测压时被下放到井下测压点处,地面可以通过压力泵向传压筒内充放气体,为维持井液与
[单片机]
基于PIC16F877单片机的井下压力测量技术研究
基于CAN总线数控系统远程输入输出模块的设计与实现
  1 引 言   CAN即控制器局域网,他的通信具有突出的可靠性、实时性和灵活性。他的应用不再局限于汽车行业,其中CAN在机床数控系统方面实现的功能主要包括:程序管理;机床系统参数输入输出诊断、参数的通讯;机床状态采集;机床工作模式采集;数据库管理等。   目前,国产数控系统的主要份额是经济型机床数控系统。经济型数控系统与机床基本输入输出接口的数量都是有限的,经常不能满足实际操作中的需求,同时在实际车间中,机床与数控系统可能距离较远,输入输出信号在远程传输过程中非常容易受到干扰而出错,而CAN总线在传输较远距离的信号时传输时间短,受干扰概率低,还具有较高的传输速度,基于这些原因本文提出了基于CAN总线的数控系统远程
[嵌入式]
基于ISA总线与KH-9300的数据采集系统软件设计
1 引言 该数据采集系统采用硬中断方式,通过对KH-9300板卡上的8254定时器和8259中断控制器编程定时触发中断并对外部脉冲计数,设计中每隔1 s采集1次数据,数据采集卡第0和1号通道采用串行方式并使用板卡上的内部时钟进行计时,第2、3、4、5号通道输人外部计数脉冲计数。所有通道采用内部门控信号。当串行的第0~1通道计数满时,就向板卡上的8259中断控制器的IN1引脚发出中断指令。通过8259中断控制器向计算机内的8259A的中断引脚(这里设计为第5号中断引脚)发出中断指令。CPU响应中断请求,执行中断程序,对板卡上第2、3、4、5号通道进行数据采集,并把采集后的数据写入文件。 2 板卡及8254定时、计数常数的设置
[测试测量]
基于ISA总线与KH-9300的<font color='red'>数据采集</font>系统软件设计
基于虚拟仪器和CAN总线集成方案实现车用驱动电机测试平台的设计
引言 能源短缺和环保问题促使人们转向开发低污染或者零污染的清洁汽车。燃料电池汽车被认为是最有希望替代内燃机汽车成为下一代公路运输工具的主流。无论是纯电动、混合动力还是燃料电池汽车,都以电动机作为驱动力源。一套适用的车用驱动电机的测试平台对于整车动力系统的开发非常重要。然而目前国内的电机测试平台一般不是针对车用驱动电机而设计,而且自动化程度不高,无法满足测试的要求。因此需要开发一套专用的车用驱动电机测试平台,这对于整车动力系统的设计及优化至关重要。 虚拟仪器技术是近几年在自动化测试和控制领域发展起来的一项新技术。其代表产品为美国NI 仪器公司的LabVIEW ,目前在包括汽车行业的众多领域得到广泛应用。本文结合燃料电池轿车的技术
[测试测量]
基于虚拟仪器和<font color='red'>CAN总线</font>集成方案实现车用驱动电机测试平台的设计
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved