推荐阅读最新更新时间:2024-05-02 21:48
基于LabVIEW的圆锯片平面度检测系统
1 引言 圆锯片是木材石材加工行业中使用广泛的切割工具。圆锯片的平面度是指包含所有测量点的两个平行平面间的最小距离。平面度是反映锯片质量好坏的重要指标之一,平面度过大不仅影响到锯片的端跳值,而且还会直接影响锯片在切割板材时的稳定性,甚至会导致无法使用 。因此,锯片在出厂前必须经过平面度检测,合格者才允许出厂,否则作为次品处理。目前国内锯片生产企业通常使用检验尺以手工的方法来检测圆锯片的平面度,效率很低。也有少数企业进口国外的检测设备,但价格昂贵,维护困难。所以,如何以较低的成本实现锯片平面度的自动检测,具有重要的现实意义。 LabVIEW是 NI (National Instruments)公司的虚拟仪器开发平台,它以G(Gr
[测试测量]
基于Labview & PXI的发动机管理模块测试
一、系统硬件 此台测试仪为生产线设计使用,分别在不同的工位配合不同的夹具使用。NI公司的虚拟仪器技术使用成熟的计算机技术和模块化的高性能硬件为我们系统的实现提供了强有力的支持。同时,NI公司丰富的产品线,也让我们在选型,确定方案时变得游刃有余。测试系统的架构如图1所示: 图1 测试原理示意图 1.总体架构 由于业界主导的PXI架构采用PC技术,保持了PCI总线的优点。同时,NI公司的PXI平台坚固耐用。因此,在本系统中,选用了基于PXI总线结构的虚拟仪器系统,其中PXI系统由嵌入式PXI控制器PXI8196和PXI机箱组成,承担着控制中心的重要作用。 2.模拟量输入部分 使用M系列NI PXI-6251数据采集板卡的一个模
[测试测量]
介绍虚拟仪器和创建虚拟仪器的理想工具
软件是虚拟仪器中最重要的部份。使用正确的软件工具并通过设计或调用特定的程序模块,工程师和科学家们可以高效地创建自己的应用以及友好的人机交互界面。他们可以设定应用程序在什么时候以什么方式采集来自设备的数据,设置数据处理、转换、存储的方式,以及如何将结果显示给用户。 LabVIEW是一种简单易用的应用开发环境。它提供了强大的功能,能轻松方便地完成与其他各种软硬件的连接,它是创建虚拟仪器的理想工具。 图形化编程 LabVIEW的强大特性之一是它的图形化编程环境。通过LabVIEW,可以在计算机上设计自定义的虚拟仪器用户界面;通过这个界面能够:操作仪器程序,控制选中的硬件,分析采集到的数据和显示结果。 在前面板上添加旋钮、按键、刻度
[测试测量]
Labview中如何创建子VI
什么是子VI? 子VI是供其他VI使用的VI,与子程序类似。子VI是层次化和模块化VI的关键组件,它能使VI易于调试和维护。使用子VI是一种有效的编程技术,因为它允许在不同的场合重复使用相同的代码。G编程语言的分层特性就是在一个子VI中能够调用到另一个子VI。下面可用一个表格表明子VI的作用: 程序代码 调用子程序 function average (in1,in2,out) { out=(in1+in2)/2.0; } main { average (point1,point2,pointavg); } 子VI框图 调用子VI框图
[测试测量]
LabVIEW的连线板
若要将VI作为子VI被其他VI调用,需要创建连线板。连线板用于显示VI中所有输入控件和显示控件的线端,集合VI的各个接线端,与VI前面板中的控件相互呼应,类似于文本编程语言中调用函数时使用的参数列表。连线板标明了可以与该VI连接的输入和输出端,以便VI作为子VI调用。 图1图标 连线板 连线板在其输入端接收数据,然后通过前面板的输入控件传输至程序框图的代码中,并从前面板的显示控件中接收运算结果传输至输出端,因此连线板只能在前面板窗口中定义。 在前面板VI图标上单击鼠标右键,从弹出的快捷菜单中选择 显示连线板 ,出现连线板,如图1所示。连线板的每个单元格代表一个接线端,使用各单元格分配输入和输出控件。默认的连线
[测试测量]
基于labview的示波器控制设计
我们知道,现在的数字示波器可以准确捕获各种周期信号、非周期信号,数字示波器已成为科研实验和工程项目中各类信号采集、记录和分析的最主要设备之一。由于很多情况下,需要把数字示波器采集到的数据进行数据处理和分析,最终完成远程的自动测试和分析的需求。因此对示波器进行远程自动控制,实现对示波器的各项功能的自动操作和对数据的处理已成为很多科研实验和工程项目必需的环节。最近,我经常接到很多工程师的询问有关如何控制示波器的电话。下面就来谈谈计算机控制示波器的步骤和方法,并利用实例进行分析和讲解。 1. 系统硬件构架 图1 系统硬件构架图 计算机通过GPIB或 LAN(网口)与示波器建立连接来控制示波器,其系统的硬件构架图见图1。
[测试测量]
基于LabVIEW和CCD的光谱数据采集与分析设计
本文引入了新兴的虚拟仪器技术,设计了一个基于LabVIEW的光谱分析及数据采集系统,通过软件编写再次对采集到的信号进行了滤波处理,增加了增益调整功能;采用最小二乘法实现了对系统的波长标定,并实现了光谱曲线的峰值寻找功能,且与传统的线性定标法进行对比,进一步改善了测量精度。最后通过实验结果表明,可以用所做的光谱分析系统分辨出汞灯光谱的特性谱线,达到光谱分析的目的。 1.引言 随着科学技术的发展和光谱分析系统的广泛研究,人们对光谱分析系统的主要指标,如光谱测量范围、分辨率、精度等方面,都提出了越来越高的要求,光谱仪现在的发展方向是微型化、自动化和高精度化。因此,本文引入了新兴的虚拟仪器技术,设计了一个基于LabVIEW的光谱分析及
[测试测量]
LabVIEW设计的远程控制实验系统
目前, 传统教育体系已经越来越不能适应当今科学技术和信息飞速发展的需要。传统的教育是以教师讲授为主,学生只是被动听讲,这种方式已经不适应培养人才的要求。另外,在实验设施不足的情况下,学生不能直接参与实验过程操作,不能很好地实现实验教学目标。传统的教学方式不利于充分发挥学生的想象力和创造力,也不利于及时追踪到最新的科技信息。随着计算机技术和网络技术的不断发展,近几年在教育领域提出了一种新的教学思路,即构建虚拟实验室的方法。而远程实验教学多数是利用虚拟技术实现,在这种虚拟实验中,实验者操纵的都不是实验设备实物,看到的只是一些利用三维技术做出来的动画,所获得的实验结果当然也不是远程设备的实际反映而是通过公式计算得到的数据 。针对这一
[测试测量]