车身控制模块设计要求及解决方案

发布者:真诚的友谊最新更新时间:2012-02-07 来源: 21IC关键字:车身控制模块  电源方案  BCM 手机看文章 扫描二维码
随时随地手机看文章

  随着人们对汽车的操控性及舒适性需求不断升高,汽车车身中的电子设备越来越多,如电动后视镜、中控门锁、玻璃升降器、车灯乃至其它更多的高级功能等。

图1:典型车身控制模块(BCM)的系统架构。

  电源要求及方案选择

  典型车身控制模块(BCM)设计重要的一步是确定电源要求,以及选择合适的电源方案。一般而言,BCM要求的输入电压在-0.5V至32V之间,输出电压为5V或3.3V。值得一提的是,汽车内的用电设备越来越多,如果电池直接供电的设备静态电流不够低,而汽车连续停泊较长时间,车内蓄电池可能因为过度放电而使汽车无法重新启动,故BCM设计需要考虑静态电流。此外,汽车应用中可能会常常面对高温环境,所以要求电源提供过温保护。

  适合于BCM的电源包括线性电源(或称线性稳压器)和开关电源(或称开关稳压器)。这两种电源各有优势,究竟选择何种电源,还要看具体应用。在车身控制模块的供电电源方面,中国市场上所售汽车中,轿车一般采用12V电源,而卡车和客车一般采用24V电源。在12V电源BCM中,推荐采用安森美半导体的线性稳压器,如NCV4275A等,见图2。NCV4275A是一款带复位和延迟功能的5V、3.3V/450mA低压降(LDO)线性稳压器,这款器件支持可编程微控制器复位,并提供多种特性,如过流保护、过温保护、短路保护等。此外,在下图中位置1处串联一个二极管(MRA4005),这线性电源能有效防止高达-42V的反向电压;在位置2处并联一个瞬态电压抑制器(TVS)管,可以有效阻止高达+45V的瞬态电源负载突降(loaddump)高压脉冲及不稳定的电源杂波,符合12V汽车电源系统的ISO16750-2-20034.6过压测试规范。实际上,在汽车发动机启动瞬间就可能出现负载突降,从而导致电池电压升高至超过40V。这些特性让NCV4275A非常适合汽车车身控制模块应用。

  实际上,NCV4275A仅是安森美半导体针对汽车应用的宽范围线性稳压器中的一款,其它线性稳压器有如NCV8664/5、NCV4949、NCV8503/4/5/6、NCV4274A等。超低静态功耗的产品,静态电流低至30μA以下,驱动电流范围在100mA至450mA之间。

图2:车身控制模块中线性电源典型应用电路示意图。

  24V电源的BCM应用中,需要将24V电压转换至5V或3.3V,如果采用线性稳压器,电源芯片本身就会有很高的功率消耗,产生大量热量导致温度过高而烧坏芯片,所以我们需要采用开关稳压器,我们推荐采用安森美半导体系列用于汽车的开关稳压器,如NCV51411、NCV8842、NCV8843、NCV33063、NCV33163、NCV3063、NCV3163、LM2576、LM2575及NCV2574等。这些开关稳压器具有较高的效率,避免产生大量的放热,保护芯片,提升系统可靠性。这些汽车应用的开关稳压器驱动电流多数在0.5A至1.5A之间,有的达到2.5A(NCV33163),开关频率在50kHz至300kHz之间。以NCV51441为例,这款器件使用V2控制架构,提供无可比拟的瞬态响应、极佳总体稳压精度及最简单的环路补偿。这款器件上的“BOOST”引脚支持“充当启动电路(Bootstrapped)”工作,将能效提升至最高;集成的同步电路支持并行电源工作或将噪声降至最低。[page]

  车身网络要求及发展趋势

  可以应用于汽车中的系统总线有多种,如控制器区域网络(CAN)、本地互连网络(LIN)及FelxRay等。这些总线的特点各不相同,表1比较了汽车应用中几种常见的系统总线,并列出了典型的安森美半导体总线收发器产品。

表1:不同汽车总线比较及典型收发器。

  安森美半导体的总线收发器系列非常适合车身控制网络应用要求。图3a)及b)分别显示了基于安森美半导体CAN收发器AMIS-42665及LIN收发器NCV7321的典型电路。值得一提的是,AMIS-42665提供小于的10μA的极低静态电流。支持总线唤醒,共模电压范围-35V至+35V,可以承受额定+/-8kV的静电放电(ESD)脉冲。NCV7321则支持-45V至+45V的电压范围,承受额定5kV的ESD脉冲。这些器件均提供强大的保护功能。

图3:基于安森美半导体收发器的典型CAN电路(图a)及LIN电路(图b)。

   在车身控制网络应用中,需要尽可能地配合降低成本及空间要求,同时提升系统的稳定性和长期可靠性,故需要提升元器件的集成度。得益于近年来出现的混合信号工艺,如安森美半导体的SmartPower高压BCD工艺,高压模拟电路如今能够与低压电路集成起来,使更高集成度的系统芯片得以开发和应用。如安森美半导体的NCV7440在同一颗芯片上集成了线性稳压器及CAN收发器,NCV7420则集成了线性稳压器及LIN收发器。这样的集成有效节省PCB板空间,可以给MCU单独供电,有效遏制其它模块对MCU电源的干扰。


  安森美半导体身为全球领先的高性能、高可靠性硅解决方案供应商,更为汽车车身控制网络应用推出一款超高集成度的芯片——NCV7462。这款芯片集成了线性稳压器、CAN收发器、LIN收发器、看门狗(WD)电路、低边驱动及高边驱动,将所需外部元件数量减至极少,仅占用极小的电路板空间,并帮助简化设计流程。

  遥控上锁及开锁设计要求及解决方案

  汽车中的遥控上锁及开锁的应用越来越普及。车身控制模块使用315MHz(美国、日本)或433MHz(欧洲)频率,通过高频接收和发送来实现遥控上锁及开锁功能。这类应用中的设计难点在于设计阻抗匹配电路,从而使功率损耗降至最低。此类应用的通用要求包括低静态电流、提供睡眠模式、低发射功率、高接收灵敏度、低功耗及适宜的频率范围等。而安森美半导体的ON-53480高频收发器很好地满足这些设计要求,如静态电流低至小于1µA,带有唤醒及睡眠检测功能,信号电平仅为10dBm,接收灵敏度更是低于-100dBm,且工作电流仅为10mA,频率范围为280至343MHz。

  板外大功率负载驱动及方案比较

  车身控制模块电路板需要为板外的一些大功率负载供电,这些负载包括汽车内部照明(5W及10W)、单向电机和汽车喇叭等。一种可选的方案是采用板内继电器。继电器的线圈属于感性负载,而感性负载在启动时需要比维持正常工作所需电流大的启动电流,且感性负载在接通电源或断开电源的瞬间会产生反向电动势。要驱动继电器,可以采用安森美半导体的NUD3124、NUD3160或NCV7608等继电器驱动器。

[page]

表2:板外大功率负载驱动方案优缺点比较

  另一种方案是采用“预驱动器+MOSFET”来驱动板外大功率负载,其中预驱动器可以采用安森美半导体的NCV7513A,这器件支持并行端口及SPI端口通信,可编程,提供失效模式检测及短路和断路诊断功能。

  第三种方案是采用SmartFET驱动。这是带保护的MOSFET,在MOSFET基础上增加了多种功能,如过压钳位、ESD保护、过流保护、过温保护、反压保护及高边和低边驱动。典型器件如低边驱动的NCV8401/2/3,及用于高边驱动(内部集成了升压电路)的NCV8450和NCV8460等。这三种方案的优缺点见表2。

  应用于BCM的其它方案

  除了上述板外大功率负载,汽车应用中常见的电动后视镜方面,可以采用安森美半导体的NCV7703来驱动其中的转向电机。这器件提供3个半桥输出,输出电流为0.6A,最高达1A,并具备自诊断功能,提供低静态电流、SPI通信及低压/过压/过温保护等特性。

  此外,车身控制模块需要采集车门、车锁、组合开关等数十个信号,往往需要扩展MCU的输入端口,这就需要并行端口转串行端口的逻辑转换芯片,常用的是安森美半导体的8位移位寄存器MC14021B。

  安森美半导体还为组合尾灯提供不同的解决方案。如NCV7680是一款8通道低边恒流驱动器,能以脉宽调制(PWM)方式设定尾部行车/刹车电流输出,而NSI45xx则是新推出的恒流线性稳压器(CCR),基于安森美半导体待批专利的自偏置晶体管技术,以低成本、强固等特点提供较高性能,着眼于替代一些汽车尾灯中使用的电阻型驱动器。

  总结:

  应用环境苛刻的车身控制模块(BCM)对元器件提出了更高的要求。本文探入探讨BCM设计在电源、车身网络及板外大功率负载驱动等多个方面的要求,并比较分析了一些领域中不同方案的优劣势。安森美半导体针身为全球领先的高性能、高能效硅方案供应商,针对车身控制模块等汽车应用提供具有强固保护特性、高可靠性、低静态电流的解决方案,如电源稳压器、总线收发器、高频收发器、继电器驱动器、预驱动器、电机驱动器、LED驱动器及MOSFET等,帮助设计人员为他们的BCM设计选择更佳的元器件方案,从而在市场上占据优势。

 

 

 

关键字:车身控制模块  电源方案  BCM 引用地址:车身控制模块设计要求及解决方案

上一篇:改进的地图匹配技术在车载导航系统中的应用
下一篇:安全气囊自动触发防障安全特性

推荐阅读最新更新时间:2024-05-02 21:53

大联大品佳推出基于Microchip的新能源汽车OBC电源解决方案
电子网消息,致力于亚太地区市场的领先半导体元器件分销商---大联大控股宣布,其旗下品佳力推基于微芯科技(Microchip)dsPIC33EP“GS”16位MCU的新能源汽车OBC的电源解决方案。该方案提供高效率和高功率因子,以及极广的交流输入电压范围。 大联大品佳推出基于Microchip的dsPIC33EP“GS”系列产品具备卓越的性能,可在开关频率更高的情况下实施更为复杂的非线性预测及自适应控制算法。这些高级算法可令电源设计实现更佳的能效和电源规格。此外dsPIC33EP“GS”器件在应用于三极点三零点补偿器时其延迟可缩短一半时间,而且在任何应用中均可节省多达80%的能耗。其应用于汽车OBC设计,提供了高效率和高功率因子
[半导体设计/制造]
数字电源解决方案,基站电源设计
  基站电源工程师遇到许多设计挑战。无线运营商希望他们能够降低能耗和减少大小。他们还提出,以尽量减少进行测序,监测子系统的复杂性,裕,以及众多的其他任务。以优化应用的要求,他们必须做出几个,包括电源转换效率与尺寸和性能的复杂性与成本的权衡,。本文将解释如何一个新的,高度集成的电源解决方案提供的灵活性和优化性能,简化这些设计挑战。   提高效率   操作基站的能源成本是无线运营商,这使得需要更高效的电源解决方案,降低运营成本的重要具有重要意义。此外,在降低功耗低功耗,因此,运营商可以使用一个较小的散热片,在无线电设备。一个较小的散热片,反过来,可能会允许一个较小的单位实施。最后,因为这些电台的单位往往是安装在一极或建筑物一侧
[电源管理]
数字<font color='red'>电源</font>解决<font color='red'>方案</font>,基站<font color='red'>电源</font>设计
基于24V电源的双环电流型PWM控制器的设计方案
电压型PWM是指控制器按反馈电压来调节输出脉宽,而电流型PWM是指控制器按反馈电流来调节输出脉宽。电流型PWM是在脉宽比较器的输入端,直接用流过输出电感线圈电流的信号与误差放大器输出信号进行比较,从而调节占空比,使输出的电感峰值电流跟随误差电压变化而变化。由于结构上有电压环、电流环双环系统,因此,无论开关电源的电压调整率、负载调整率和瞬态响应特性都有提高,是目前比较理想的新型PWM控制器。 1 双环电流型PWM控制器工作原理 双环24V电源电流型脉宽调制( PWM) 控制器是在普通电压反馈PWM 控制环内部增加了电流反馈的控制环节,因而除了包含电压型PWM 控制器的功能外,还能检测开关电流或电感电流,实现电压电流的双环控制。双环电
[电源管理]
基于24V<font color='red'>电源</font>的双环电流型PWM控制器的设计<font color='red'>方案</font>
高集成度蓝牙耳机电源管理方案
  随着越来越多的手机支持 蓝牙 功能, 蓝牙 耳机已成为手机的必备选件。同时,随着支持MP3播放的立体声 蓝牙 耳机的推出,蓝牙耳机已能够同时连接到蓝牙移动电话和音乐播放器,这必将给蓝牙应用带来新的亮点。   蓝牙耳机的核心是射频和基带处理两部分,为适应功能的集成和设计的小型化, CSR 、Broadcom等公司已将射频和基带处理功能集成在一起,如 CSR BlueCore4高集成的蓝牙芯片,封装最小为6 6mm。整个耳机的电源管理设计要求外围组件少,集成度高,同时满足蓝牙芯片对负载响应和噪声抑制的要求。   蓝牙耳机多采用锂电池供电,其电压范围为2.7V至4.2V。电池容量为90mAH至170mAH。为满足
[电源管理]
高集成度蓝牙耳机<font color='red'>电源</font>管理<font color='red'>方案</font>
基于Matlab的孤立逆变电源设计方案
基于Matlab软件平台,采用双环控制策略设计的逆变源,利用Matlab-Simulink-SimPowerSystems的工具箱进行建模仿真,验证了本文所设计方案的可行性和有效性。 0引言 随着太阳能、风能等可再生能源的发展,分布式发电以其环境污染少、能源综合利用率高、供电可靠等优点,逐渐成为了各国家竞相研究的热点,在美国、欧洲等技术成熟的国家和地区,以将其广泛应用在微电网中。逆变电源作为一种有效的电力供应源,成为了微电网的重要组成部分,并在微电网的研究和实施中得到了广泛的应用。 本文设计的基于PWM的孤立逆变电源,其控制模型采用电压外环和电流内环双环控制策略,电压外环和电流内环均采用PI控制方式。应用Matlab软件建立实验模
[电源管理]
基于Matlab的孤立逆变<font color='red'>电源</font>设计<font color='red'>方案</font>
ARM控制逆变器电源电路设计方案
  本文将介绍一款基于ARM控制的逆变器电源电路设计方案及其应用。   系统总体方案   总体设计框图   如图1 所示, 逆变器系统由升压电路、逆变电路、控制电路和反馈电路组成。低压 直流电源 DC12V经过升压电路升压、整流和滤波后得到约DC170V高压直流电,然后经全桥逆变电路DC/AC转换和LC滤波器滤波后得到AC110V的正弦交流电。   逆变器以ARM控制器为控制核心,输出电压和电流的反馈信号经反馈电路处理后进入ARM处理器的片内AD,经AD转换和数字PI运算后,生成相应的SPWM脉冲信号,改变SPWM的调制比就能改变输出电压的大小,从而完成整个逆变器的闭环控制。    1、SPWM方案选择   1.1、PW
[电源管理]
ARM控制逆变器<font color='red'>电源</font>电路设计<font color='red'>方案</font>
工程师学堂:简易的稳压电源DIY方案
作为一个DIYER,拥有一个自己做的简单而又可靠的稳压电源是一件蛮必要的事情,因为很多时候你需要一个实用的电源来让自己的实验做的更顺利。正好最近朋友买了一个朗讯的通信时钟,需要一个功率比较大的稳压电源,我就抓住这个机会,给大家讲讲怎样自己做一个电源吧。其实最主要的原因,是成品太贵了……嘿嘿。   制作的时候蛮匆忙的,忘记拍照了,以下就成品的图来讲解一下。   1 工具和材料   ● 936焊台   ● 斜口钳   ● 尖嘴钳   ● 镊子   ● 焊油   ● 无铅焊锡   ● 手持万用表   ● 电动起子   ● 手电钻和若干钻头   ● 手动攻丝器和攻丝钻头   ● 电磨   ○ 纽子开关  
[模拟电子]
工程师学堂:简易的稳压<font color='red'>电源</font>DIY<font color='red'>方案</font>
ROHM开始提供业界先进的“模拟数字融合控制”电源——LogiCoA™电源解决方案
利用LogiCoA™微控制器,以更低功耗实现与全数字控制电源同等的功能 全球知名半导体制造商ROHM(总部位于日本京都市)面向中小功率(30W~1kW级)的工业设备和消费电子设备,开始提供LogiCoA™电源解决方案,该解决方案能以模拟控制电源*1级别的低功耗和低成本实现与全数字控制电源*2同等的功能。 在以中等功率工作的工业机器人和半导体制造设备等应用中,大多采用模拟控制电源。然而近年来,要求这类电源要具备高可靠性和精细控制功能,仅采用模拟控制方式的电源配置已经很难满足市场需求。另一方面,全数字控制电源虽然可以进行更精细的控制和设置,但存在所用的数字控制器功耗大、成本高等问题,因此在中小功率电源中很难普及应用。针对
[电源管理]
ROHM开始提供业界先进的“模拟数字融合控制”<font color='red'>电源</font>——LogiCoA™<font color='red'>电源</font>解决<font color='red'>方案</font>
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved