以灯光控制为例说明LIN总线在车身控制中的应用

发布者:RadiantGaze最新更新时间:2012-03-27 来源: 21ic 关键字:车内通讯网络  LIN总线  车身控制  灯光控制 手机看文章 扫描二维码
随时随地手机看文章

1. 引言

由于车内电控单元的增多导致车内线束大量增加,这带来了很多问题:减少了布局空间;

给制造和安装增加了难度;当增加额外的功能时将会增加线束,使性价比难以改善;大量线束增加了车的重量,这不利于提高燃油效率和性能;数量众多的连接点增加了故障隐患。因此车内引入通讯网络来管理逐渐增多的电子器件是非常必要的。汽车网络能够灵活方便的集成各子系统从而实现更复杂的系统,同时减少了车内线束和车重量,减少了由电控单元带来的成本的增加,并且提高了系统的可靠性。车内通讯网络种类很多,汽车电子协会(SAE)将车内通讯网络分成四类,见下表:

电控单元之间的通讯根据对通讯带宽和通讯速度的要求选择不同的通讯网络。车身控制部分的电控单元由于传输的数据量比较少且对实时性要求不高,所以车身控制部分采用A类低速通讯网络即可。目前很多车身控制解决方案中采用CAN的低速网络来实现通讯。而最近多家汽车制造商和半导体公司共同制定了可实现车内舒适性和方便性应用的低速网络的通讯标准,该项通讯标准便是LIN。由于LIN是基于通用的SCI/UART接口的,不像CAN需要专用的控制器,而且LIN是单线传输的,其通讯成本要低于CAN,因此用LIN来代替原有的低速CAN,可以降低系统成本提高系统性能。

2. LIN 总线概述

LIN总线的方案是由众多汽车制造商和半导体公司创建的,其目的是为了找到更低成本的子总线网络,作为使用广泛的CAN通讯网络的辅助。LIN网络是基于主从结构的,使用单线通讯,减少了大量线束的重量和费用。LIN目标应用是不需要CAN的性能、带宽及复杂性的低速系统,如

开关类负载或位置型系统包括车的后视镜、车锁、车座椅、车窗等的控制。LIN更有助于实现汽车中与CAN网络连接的分布式控制系统。

2.1 LIN总线特点

•低成本的单线12v数据传输,线的驱动和接收特性符合改进的ISO 9141单线标准

•传输速率可达20Kbit/s

•单主/多从的结构,不需要总线仲裁,由主节点来控制总线的访问

•基于通用UART/SCI的硬件接口,使用成本低的半导体工艺实现,几乎所有的微控制器都有LIN 必需的硬件

•从节点不需要晶振或陶瓷振荡器就可实现自同步,从而减少了从节点硬件成本

•保证在最差状况下信号传送的等待时间,来避免总线访问冲突。[page]

2.2 LIN的通讯协议和数据帧格式

LIN网络由一个主节点和多个从节点构成。所有的节点都包括一个从任务(slave task),从任务又分成发送和接受任务,主节点还包括一个主任务(master task)。在LIN网络中所有通讯都是由主任务发起的,如下图所示。主任务发送一帧头(message head)给所有的从任务,帧头由三部分组成:同步间隔(synch break),同步场(synch field)和信息识别符(identifier)。

从任务通过信息识别符来判断是否响应主任务,若需要响应主任务则开始发送响应信息。响应信息由2,4或8个数据字节和1个校验和字节组成。

信息识别符表示的是信息的内容,而不是信息的目的地址。这样定义可使多个节点收到同样的信息,并且数据能够以多种方式交换。数据可以从主节点发送到一个或多个从节点,也可以通过从节点发送给主节点或其他从节点。因此从节点之间通讯并不需要经过主节点,并且主节点可以将信息广播给网络内的所有节点。主节点中的主任务控制数据帧的发送时序和优先级。

主节点传送信息到从节点,而从节点只在主节点询问时才传送信息。从节点仅在需要发出唤醒信息的时候才主动地发送信息。

LIN的数据帧由帧头和响应信息组成,如图1所示。帧头由主任务发出,主任务在发出同步间隔后发送同步场(0x55),从节点利用同步场将它的波特率调整到传送来的信号的波特率。之后,发送一字节的信息识别符,其中0~3位表示信息类别,4~5位表示信息长度,7~8位是奇偶校验。从任务通过该字节判断数据是否自己有关,并确定自己如何处理该数据。响应信息是由从任务发出的,由2个、4个或8个字节长度的数据和1个字节的和校验构成。和校验(checksum)表示数据帧结束,和校验是通过计算数据的全部字节而得到的(不包括识别字节及同步场)。

LIN 总线的另一个帧是睡眠帧,由主任务发出,它的作用是让总线和节点进入低功耗状态。睡眠帧的识别字段包含数值 0x80之外,除此之外,睡眠帧与数据帧是相似的。当收到唤醒信号时,总线睡眠状态便中止。唤醒信号由从任务发出。

2.3 LIN的物理接口

LIN的物理接口如下图所示,LIN的物理接口是基于通用的SCI (UART)的硬件接口的,SCI (UART)接口是几乎所有的微处理器都集成的硅模块,因此使用LIN更加方便。LIN是单线传输数据的,每个节点通过上拉电阻线与总线,电源从汽车电源网络获得VBAT。和上拉电阻串联的二极管可以防止电子控制单元ECU 在本地电池掉电的情况下通过总线上电。

3. Lin车身控制应用方案

车身控制系统主要包括灯光控制模块,车门控制模块和仪表显示模块等,这些模块的基本原理是采集各种开关的状态量根据这些状态量来驱动负载动作,所以车身控制系统的控制对象主要是不同功率的灯、低速电机、电磁阀和开关量器件。它们对信息传输的实时性要求不高, 因此车身控制系统的通讯网络采用A类标准即可。LIN正是众多汽车生产商和半导体公司联合提出的A类车用通讯网的开放总线协议标准。同时考虑到车身控制系统对成本比较敏感,LIN以其低成本的优势成为车身控制系统网络的首选。

下图给出了卡车车身控制系统的解决方案。车身控制系统的这些电控模块与汽车驱动系统分开有利于保证驱动系统的实时性,这也是汽车内通讯网络分级的一个原因。车身控制系统的中央控制模块也是一个网关,将CAN网络和LIN网络连接起来。

本文选取中央控制模块和灯光控制模块来说明LIN总线的应用。中央控制模块位于车的驾驶室内,主要检测驾驶室内控制开关的状态,并根据这些控制开关的状态实现相应的控制策略,然后将控制命令通过LIN总线发送给向各子模块,同时通过CAN总线接收上层CAN网络的某些信息。中央控制模块的MCU选用Motorola公司的08系列单片机MC68HC908GZ16,该芯片是一款可靠性高和抗干扰能力强的汽车专用芯片,其内部集成了CAN的控制器,并有SCI模块,这方便了CAN和LIN的开发。中央控制模块中的CAN接口芯片采用Motorola公司的MC33388,LIN的接口芯片采用Motorola公司的MC33399。中央控制模块的POWER单元作用是将车内24v电压转换成5v供给MCU。DETECT单元作用是采集开关量的状态,将并行的数据转换成串行数据送给MCU。中央控制模块还可以根据不同需求增加驱动单元,在本例中,中央控制模块还完成了驱动车内的内饰灯和雨刷电机的工作,驱动芯片分别选取Motorola公司的MC33286和MC33289。

灯光控制模块有两块,分别位于车的前部和后部,主要控制前部和后部的车灯。灯光控制模块的MCU采用Motorola公司的低成本的单片机MC68HC908EY4,驱动芯片根据车灯所需功率来选取,本文选取了多片Motorola公司的MC33288和MC33286。

4.结论

LIN总线在车身控制系统的应用,降低了低端通讯网络的成本,同时增加了设计的灵活性,提高了系统的可靠性,有利于分布式车身控制系统的开发。因此LIN总线在汽车领域有着良好的应用前景,此外LIN总线作为一种开放协议,还可用在工业和家电领域,实现对速度要求不高,短距离连接的设备间的通讯。

参考文献:

1 LIN Specification Package 2.0 online. LIN Consortium.2003

2 Local Interconnect Network Applications. Motorola Inc.2004

3 Local Interconnect Network (LIN) Demonstration. Motorola Inc.2000

关键字:车内通讯网络  LIN总线  车身控制  灯光控制 引用地址:以灯光控制为例说明LIN总线在车身控制中的应用

上一篇:基于英飞凌产品的汽车ABS解决方案
下一篇:能式汽车安全气袋控制系统的设计方案

推荐阅读最新更新时间:2024-05-02 21:59

研华汽车BLM车身控制器测试系统
车身控制器功能测试系统,模拟实车电气负载和其它控制器单元,测试各个车身控制器功能是否满足设计需求。被测系统包括雨刮、门锁、车窗、内灯光、外灯光、仪表、防盗安全及其他辅助系统。系统具有测试数据采集、存储和自动报表生成功能,以及良好的人机界面,为车身控制器功能测试和整车集成测试提供支持。 系统功能    1、手动测试通过手工操作按键模拟各种开关和变量进行测试,与传统测试类似; 2、自动功能测试:通过计算机控制各继电器模拟各种开关和变量进行自动测试,不需人为干预,提高测试效率。 3、加载模拟负载、实际负载进行测试。 4、每一个子功能测试项均可在各点火状态下进行测试。 5、测试过程中,可通过CAN总线诊断车身控制器配置信息
[汽车电子]
研华汽车BLM<font color='red'>车身</font><font color='red'>控制</font>器测试系统
比亚迪云辇智能车身控制系统亮相,将性能发挥到了极致
近日,比亚迪要整出了“狠活”,一辆会快速弹跳、缺一个轮胎也能行驶的汽车出现在大家的视野中。这辆车的核心技术就是搭载了比亚迪自主研发的云辇智能车身控制系统,该系统从车身的多维度进行控制,由三大核心技术组成:云辇-C智能阻尼车身控制系统、云辇-A智能空气车身控制系统、云辇-P智能液压车身控制系统。据比亚迪官方介绍,未来该系统会持续进行技术迭代,推出更多的产品。 云辇-C智能阻尼车身控制系统 该系统主要用于比亚迪王朝及海洋系列,主要的作用是提高车辆的舒适性和操控性。核心技术是通过电控系统对减震器的阻尼力进行调节,在通过颠簸路面时尽可能的保持车身的稳定性和减少车内人员晃动。此外,通过云辇智算中心,减振器阻尼力实现了可无级自动快速
[汽车电子]
比亚迪云辇智能<font color='red'>车身</font><font color='red'>控制</font>系统亮相,将性能发挥到了极致
基于CAN总线的汽车车身控制系统设计
1 引言   随着汽车电子技术的不断发展,汽车上的各种电子装置越来越多,电子控制装置之间的通讯也越来越复杂,而汽车上传统的电气系统大多采用点对点的单一通信方式,相互之间少有联系,造成了庞大的布线系统,已远远不能满足汽车愈加复杂的控制系统要求。汽车控制局域网CAN 总线应运而生,它广泛应用于汽车电子控制系统中,为实现汽车控制部件的智能化和汽车控制系统的网络化提供了一个有效的途径和方法。   2 CAN总线技术简介   CAN 总线是德国BOSCH 公司从20 世纪80 年代初为解决现代汽车中众多的控制与测试仪器之间的数据交换而开发的一种串行数据通信协议,它是一种多主总线,通信介质可以是双绞线、同轴电缆或光导纤维。通信速率可达1
[嵌入式]
车身电子集中与分布式控制并驾齐驱
堀田慎吉:分布式架构还可利用灵活的位置配置,减少对车辆中音频和视频系统的干扰。   随着人们对于舒适和安全需求的不断增强,车身电子中集成的功能模块也在不断增加,并且一些原来只在高端汽车中的功能正向低端车转移。不过,总的来说,不同类型的汽车中,需要的车身控制模块(BCM)数目不一样,电子控制模块(ECU)数目也不一样。瑞萨科技有限公司汽车电子市场中心总经理堀田慎吉指出:“从小型/经济型汽车到大型/豪华汽车,使用的BCM和ECU数目各不相同。一般而言,小型/经济型车中,10~12个ECU(2~4个BCM)比较多见;高端大型/豪华汽车中,通常为70~120个ECU(20~40个BCM),比如BMW7系、奔驰S级和雷克萨斯LS460等。
[焦点新闻]
光电传感器实现智能灯光控制系统
引言 当今社会人们更加注重节能环保,照明这一领域,特别是在公共场所也发生了很大的变化。现在的声光控制灯属于新型建筑照明系统,这种系统应用在楼道上还比较实用,但现在我们学校将该系统应用在洗手间里,我们体验到它给我们带来的不便。由于每个人上洗手间的时间长短不一样,而且不会一直会有大的声音,该系统如果控制着灯一直亮着或者亮的时间太长,这样就达不到节能的效果,但如果亮的时间太短,还在洗衣手间的人就会产生恐惧心理,因而,若该系统用于洗手间,很有必要进行改进。 1 系统总体设计 本设计的改进之处是设计一个具有计数功能的模块,我们可以使用对射型光电传感器,如图1所示在洗手间的进口处设置两个发射源和两个接收源,当有人进或者出洗手问的门
[嵌入式]
基于LIN总线的车用无刷直流电机控制器设计
1 前言   随着汽车部件的电动化、自动化程度不断提高和对汽车电机的噪声、电磁兼容、效率的高要求 , 永磁无刷直流电机正在逐步替代有刷的永磁直流电机 。永磁无刷电机具有体积小、寿命长、效率高、结构简单、可靠性好等优点 , 利用它作为汽车部件的驱动执行元件可有效地提高汽车部件的性能。例如在 Freightliner 公司的 M2 系列商务车上 , 采用无刷电机驱动其空调系统的鼓风机 , 更好地调节了送风速度 。   由于汽车总线技术的日趋成熟 , 汽车内多个电机单元的控制方式正从传统的集中式线束控制向分布式总线控制转变。分布式总线控制可以减少线束 , 降低成本 , 便于各个电机控制单元和车内其它电控单元一起形成一个综合协
[汽车电子]
基于<font color='red'>LIN总线</font>的车用无刷直流电机<font color='red'>控制</font>器设计
基于LIN总线的汽车方向盘按键控制器的设计与实现
人们在选购家用轿车时,对舒适性的要求在不断提高,舒适性能已成为购车因素的一项重要指标。传统的汽车方向盘只具备控制转向和喇叭的功能,而随着汽车车身电子的发展,方向盘上正逐渐集成许多用于控制其他功能的按键,如控制收音机的按钮、控制DVD或者CD播放的按钮、手机蓝牙免提、自动巡航控制等,甚至还预留了用户可配置功能的按键,即学习型按键。 方向盘按键的设计风格体现了每种车型不同的个性,因此方向盘的按键控制设计正受到越来越多车厂的关注。考虑到汽车方向盘按键控制器受到安装空间、多重命令和设计成本等诸多因素的限制,同时LIN(Local Interconnect Network)总线在车身电子低速应用领域具有可靠性高、节省线束的优势,我们选用飞思卡
[单片机]
基于<font color='red'>LIN总线</font>的汽车方向盘按键<font color='red'>控制</font>器的设计与实现
基于CAN总线的汽车车身控制系统的研究
    引言   随着汽车电子技术的不断发展,汽车上的各种电子装置越来越多,电子控制装置之间的通讯也越来越复杂,而汽车上传统的电气系统大多采用点对点的单一通信方式,相互之间少有联系,造成了庞大的布线系统,已远远不能满足汽车愈加复杂的控制系统要求。汽车控制局域网CAN 总线应运而生,它广泛应用于汽车电子控制系统中,为实现汽车控制部件的智能化和汽车控制系统的网络化提供了一个有效的途径和方法。    2 CAN总线技术简介   CAN 总线是德国BOSCH 公司从20 世纪80 年代初为解决现代汽车中众多的控制与测试仪器之间的数据交换而开发的一种串行数据通信协议,它是一种多主总线,通信介质可以是双绞线、同轴电缆或光导纤维。通
[嵌入式]
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved