浅谈电池传感器如何满足汽车电池检测的需求

发布者:tmgouzi最新更新时间:2012-04-06 来源: 21ic 关键字:电池传感器  汽车电池检测  ECU 手机看文章 扫描二维码
随时随地手机看文章

几年前,只有高档汽车才配有电池传感器。如今,安装小型电子装置的中低档汽车越来越多,而十年前只能在高端车型中见到。铅酸电池所引起的故障数量因此不断增加。过不了几年,每辆汽车都会安装电池传感器,从而降低日益增多的电子装置引发故障的风险。

每五次汽车故障就有一次是电池造成的。在未来数年内,随着电传线控,发动/熄火引擎管理和混合动力(电力/燃气)等汽车技术日益普及,这一问题将变得越来越严重。为了减少故障,需要精确地检测电池的电压、电流和温度,对结果进行预处理,计算充电状态和运行状态,将结果发送到发动机控制单元 (ECU),以及控制充电功能。

现代汽车诞生于20 世纪初。第一辆汽车依靠手动启动,需要很大的力量,存在很高的风险,汽车的这种“手摇曲柄”造成了很多死亡事故。1902 年,第一台电池启动马达研制成功,到1920 年,所有的汽车都已采用电启动。

最初使用的是干电池,当电能耗尽时,必须予以更换。不久之后,液体电池(即古老的铅酸电池)就取代了干电池。铅酸电池的优点是当发动机工作时,它可以从中充电。

在上世纪,铅酸电池几乎没有什么变化,最后一次主要改进是对其进行密封。真正改变的是对它的需求。起初,电池仅仅用于发动汽车、鸣喇叭和为车灯供电。如今,在点火之前,汽车的所有电气系统都要靠它供电。

激增的新型电子设备不仅仅是GPS和DVD播放器等消费电子设备。如今,发动机控制单元 (ECU)、电动车窗和电动座椅之类的车身电子设备已成为许多基本车型的标准配置。呈指数级增加的负载已经产生严重影响,电气系统造成的故障日益增多就是明证。

根据ADAC 和RAC 统计,在所有汽车故障中,几乎有36%可归因于电气故障。如果对该数字进行分析,可以发现50%以上的故障是由铅酸电池这一组件造成的。

评定电池的健康状况以下两个关键特性可以反映铅酸电池的健康状况:

(一)运行状态 (SoH)

SoH 指示电池可以储存多少电荷。

充电状态充电状态指示好比是电池的“燃油表”。计算SoC 的方法有很多,其中最常用的有两个:开路电压测量法和库仑测定法(也称库仑计数法)。

(二) 充电状态 (SoC)

SoC 指示电池可以提供多少电荷,用电池额定容量(即新电池的SoC)的百分比表示。

(1) 库仑测定法

这种方法用库仑计数求取电流对时间的积分,从而确定SoC。利用该方法可以实时计算SoC,即使电池处在负载条件下。然而,库仑测定法的误差会随着时间推移而增大。

(2) 开路电压 (VOC) 测量法

电池空载时的开路电压与其充电状态之间成线性关系。这种计算方法有两个基本限制:

一是为了计算SoC,电池必须开路,不连接负载;二是这种测量仅在经过相当长的稳定期后才精确。

这些局限使得VOC 方法不适合在线计算SoC。该方法通常在汽车维修店中使用,在那里电池被卸下,可以用电压表测量电池正负极之间的电压。

一般是综合运用开路电压和库仑计数法来计算电池的充电状态。

运行状态运行状态反映的是电池的一般状态,以及其与新电池相比储存电荷的能力。由于电池本身的性质,SoH 计算非常复杂,依赖于对电池化学成分和环境的了解。电池的SoH 受很多因素的影响,包括充电接受能力、内部阻抗、电压、自放电和温度。

一般认为难以在汽车这样的环境中实时测量这些因素。在启动阶段(引擎起动),电池处在最大负载下,此时最能反映电池的SoH。

Bosch、Hella 等领先汽车电池传感器开发商实际使用的SoC和SoH 计算方法属于高度机密,常常还受专利保护。作为知识产权的拥有者,他们通常与Varta 和Moll 等电池制造商密切合作开发这些算法。

图1 所示为电池检测常用的分立电路。


图1 分立电池检测解决方案

该电路可以分为三个部分:

(1) 微控制器

微控制器或MCU 主要完成两个任务。第一个任务是处理模数转换器 (ADC) 的结果。这项工作可能很简单,例如仅执行基本滤波;也可能很复杂,例如计算SoC 和 SoH。实际的功能取决于MCU 的处理能力和汽车制造商的需求。第二个任务是将处理过的数据经由通信接口发送到ECU。[page]

(2) 电池检测

电池电压通过一个直接从电池正极分接出来的阻性衰减器来检测。为检测电流,将一个检测电阻(12V应用一般使用100mΩ)放在电池负极与地之间。在这种配置中,汽车的金属底盘一般为地,检测电阻安装在电池的电流回路中。在其它配置中,电池的负极是地。对于SoH 计算,还必须检测电池的温度。

(3) 通信接口

目前,本地互连网络 (LIN) 接口是电池传感器和ECU 之间最常用的通信接口。LIN 是广为人知的CAN协议的单线、低成本替代方案。

这是电池检测最简单的配置。然而,大多数精密电池检测算法要求对电池电压与电流,或者电池电压、电流与温度同时采样。

为了进行同步采样,最多需要增加两个模数转换器。此外,ADC 和MCU 需要调节电源以便正确工作,导致电路复杂性增加。这已经由LIN 收发器制造商通过集成调节电源而得到解决。

汽车精密电池检测的下一步发展是集成ADC、MCU 和LIN收发器,例如ADI 公司的ADuC703x 系列精密模拟微控制器。

ADuC703x 提供两个或三个8 ksps、16 位Σ-Δ ADC,一个20.48MHz ARM7TDMI MCU,以及一个集成LIN v2.0 兼容收发器。ADuC703x 系列片内集成低压差调节器,可以直接从铅酸电池供电。

图2 所示为采用这种集成器件的解决方案。


图2 采用集成器件的解决方案示例

为了满足汽车电池检测的需求,前端包括如下器件:一个电压衰减器,用于监控电池电压;一个可编程增益放大器,与100mΩ 电阻一起使用时,支持测量1A 以下到1500A 的满量程电流;一个累加器,支持库仑计数而无需软件监控;以及一个片内温度传感器。

关键字:电池传感器  汽车电池检测  ECU 引用地址:浅谈电池传感器如何满足汽车电池检测的需求

上一篇:智能复用器解决汽车照明系统问题
下一篇:压力传感器在车载GPS接收机中的应用

推荐阅读最新更新时间:2024-05-02 21:59

奥地利微电子新款AS8515传感器接口为汽车电池电量传感提供完整解决方案
中国,2012年12月12日——奥地利微电子公司(SIX股票代码:AMS)是全球领先的高性能模拟IC和传感器芯片制造商,专为消费、工业、汽车应用行业服务,该公司今日宣布推出系统级封装(SiP)芯片AS8515。当通过SPI接口连接任何一个微控制器时,新品可帮助实现完整的汽车电池测量系统。 AS8515是一款堆叠晶元封装的产品,包含一个具有两个高精度ADC通道用以测量电流、电压及温度的信号处理晶元、一个具有稳压功能的高压CMOS晶元以及一个LIN收发器和监视功能。产品将支持制造商满足ISO26262安全标准规定的要求,并且非常适合应用于使用锂离子电池的电动汽车、混合动力汽车以及内燃发动机车辆的电池管理系统(BMS
[汽车电子]
日本研究人员制作出金刚石量子传感器 可实现高精度EV电池监控
作为传统油车的环保替代品,电动汽车(EV)不断被普及,因此众多研究专注于开发高效的电动汽车电池。但是电动汽车效率低的主要原因是对电池电量的不准确估计。EV电池的充电状态是根据电池的电流输出来测量的,从而提供对车辆剩余续航里程的预估结果。 通常,电动汽车中的电池电流可以达到数百安培。然而,能够检测此类电流的商用传感器无法测量毫安级电流的微小变化,使得电池充电预估的模糊性达10%。 这意味着电动汽车的实际续航里程可以延长10%。反之若将这10%充分利用,则将减少电池的低效使用。 据外媒报道,由日本东京工业大学(Tokyo Institute of Technology)Mutsuko Hatano教授领导的研究团队提出了一个解
[汽车电子]
日本研究人员制作出金刚石量子<font color='red'>传感器</font> 可实现高精度EV<font color='red'>电池</font>监控
电动汽车电池电池管理及其状态检测
  蓄电池技术是下一代汽车——电动汽车的核心技术之一。蓄电池是复杂的电化学系统,国内外对电池管理技术都进行了大量的研究,取得了许多成果。一般认为电池管理系统主要有如下功能:电池状态参数采集(包括温度、电压、电流等);电池荷电状态(State of charge,SOC)的准确估计;不健康电池的早期诊断;对电池组安全运行全面监控,如防止电池的过充电和过放电等等。   由于电动汽车蓄电池组通常是由几十个(上百个)单体电池组成,所以,每一个单体电池的工作状态正常与否不仅反映电池组性能的好坏,而且影响电池组的容量及剩余能量。实践表明,在电动汽车运行过程中,如不及时检测,找出老化电池给予调整,电池组的容量将变小,寿命将缩短,影响整个电池
[电源管理]
电动<font color='red'>汽车</font>蓄<font color='red'>电池</font>组<font color='red'>电池</font>管理及其状态<font color='red'>检测</font>
瑞萨电子ProPILOT 2.0为您实现ECU驾驶判断与控制功能
全球领先的半导体解决方案供应商瑞萨电子株式会社(TSE:6723)今日宣布,日产汽车有限公司(Nissan Motor Co., Ltd.)采用瑞萨创新型高性能汽车电子技术应用于其ProPILOT 2.0智控领航系统,搭载此系统的全新Nissan Skyline车型已于2019年7月16日亮相。该驾驶辅助系统结合了导航系统与高速公路单车道全自动驾驶功能,采用瑞萨R-Car汽车系统级芯片(SoC)及RH850汽车微控制器(MCU),在电子控制单元(ECU)中实现驾驶判断与控制。 ProPILOT 2.0智控领航技术用于高速公路的驾驶,覆盖从匝道驶入到驶出匝道的过程,通过与车辆的导航系统配合使用,帮助车辆在指定道路上按照预设
[汽车电子]
瑞萨电子ProPILOT 2.0为您实现<font color='red'>ECU</font>驾驶判断与控制功能
Pixelworks TrueCut让电影呈现全新体验级别
提供业界领先低功耗视频处理解决方案的领先供应商——Pixelworks,宣布,该公司获奖的TrueCutä平台已用于播放动作场面丰富的影片《烈火英雄》。该片在北京首映,短短六天内票房收入约人民币6亿元;现已在中国各地的HDR和SDR影院全面上映。这是第四部使用TrueCut平台在中国发行的电影;影片的上映让电影制作人看到了更多的电影机会。 Pixelworks的技术执行副总裁Richard Miller表示:“在过去的几个月里,我们在中国的生态系统合作伙伴一直在为《烈火英雄》的发行做准备,我们很高兴看到它的成功。TrueCut高帧率格式使电影制作人能够在HDR和SDR屏幕上始终如一地为电影运动呈现提供令人难以置信的全新体验。”
[传感器]
宽电流传感拓扑实现高精度的12V汽车电池的高侧检测
  为了提高新车的燃油经济性,汽车中越来越多的功能正在电子化,以减少内燃机的连续负载。这些功能包括水、油和燃料泵,气门驱动和动力转向系统。由于电力负荷是由发动机转移到汽车电池,保持电池充电和正常工作的要求变得更加重要。   对于汽车电气系统设计师来说,电池传感器是一个极其重要的元件:它通过LIN总线连接电气系统的电子控制单元(ECU),用于显示充电状态、正常状态和功能读数状态。   通常情况下,电池传感器位于电池负极,用于测量低侧电流、电压和温度。电池传感器的工作原理是同时捕捉1kHz的采样率下的电池电流和电压值。这需要极高精度的充电状态测量,并能够动态跟踪电池阻抗。基于分流的低侧电流检测零偏移高精度测量系统与电压检测功能同步
[汽车电子]
宽电流传感拓扑实现高精度的12V<font color='red'>汽车</font><font color='red'>电池</font>的高侧<font color='red'>检测</font>
汽车电脑电路的分析与检测
    Motronic1.5.4电脑是由上海大众汽车有限公司与德国博世(BOSCH)公司合作开发的新型电子燃油喷射系统,其形式为D型集中控制式,称为Motronic(莫特朗尼克)系统,全称是闭路电子控制多点燃油顺序喷射系统,其点火系统与燃油喷射系统复合在一起。Motronic1.5.4已广泛应用于长安、一汽夏利、桑塔纳2000GLi、世纪新秀、奇瑞QQ等车型。因此对Motronic1.5.4电脑的故障分析具有普遍意义。 1Motronic1.5.4电脑的CPU——B58468     B58468是BOSCH公司委托Siemens公司生产的8位微控制器。它具有Siemens公司80C537的典型内核,是Siemens公司
[嵌入式]
合适的电源可以简化汽车ECU设计
在上一篇文章中,将汽车电子模块或ECU的设计归结为能够满足三个基本要求: 可以处理高压情况,如负载突降或双电池跳跃。 可穿越低压冷启动条件 在待机条件下消耗最小电流,即低静态电流。 在本条目中,我将解释如何通过为ECU、模块或电路板选择合适的稳压器来实现这三者。 让我们从调节器的类型开始。开关模式稳压器提供最高的效率和最大的输出功率可用性(优于线性稳压器),特别是当输入限制在 12V / 100μA 时。同步降压配置可产生最高效率。 例如,让我们看一下LT8610同步降压型稳压器。它通过在其输入端吸收高达42V的电压来满足输入要求。它满足静态电流要求:停机模式时为 2.5μA。问题是它是否满足效率和压差(冷启动)要求。
[嵌入式]
合适的电源可以简化<font color='red'>汽车</font><font color='red'>ECU</font>设计
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved