PLC及触摸屏的发射机控制系统设计方案

发布者:温暖梦想最新更新时间:2012-05-19 来源: 21IC 关键字:PLC  触摸屏  发射机控制 手机看文章 扫描二维码
随时随地手机看文章

1、引言

聚束器NB2是重离子加速器系统中,提高束流品质的一个高频系统。其工作原理如图1示,


图1:工作原理图

速度不同的带电粒子经过耦合有大功率高频信号的真空加速腔时将受到速度调制,最终粒子的速度趋于一致。即如粒子1以V1,粒子2以V2的速度在束线中运动,其中V1小于V2,经过相同的时间,粒子2到达高频信号的负半周期,粒子1到达高频信号的正半周期,二者都受到由电场力产生的加速度a的作用,由式1-1可知经过相同的时间,粒子速度趋于一致,以达到改善束流的品质。

V2-a.t=V

V1+a.t=V 式1-1

高频发射机系统如图2所示,主要由高频放大、槽路、冷却系统和供电系统四部分组成。高频放大部分是由固态宽频带放大器、电子管构成的二级放大系统;供电系统主要负责电子管的灯丝、栅极、帘栅极、阳极和宽频带放大器的供电;加之整个发射机是一个以分布参数为主的系统,因而槽路是改善发射机参数和性能的重要组成部分。考虑到发射机工作在一个有高压、低压、交流、直流、脉冲和模拟信号混合的电磁环境中,为保证控制系统的稳定性和可靠性,采用了西门子S7-300系列的PLC、触摸屏,并结合Ethernet(工业以太网)技术设计了NB2发射机控制系统,实现了发射机的远程控制。

Ethernet网络是采用商业以太网通信芯片和物理介质,利用以太网交换机实现各设备间的点对点连接的工业以太网技术。能同时能支持10M和100M的以太网的商业产品。它的一个数据包最多可达1500字节,数据传输可达10Mbps或100Mbps;从而实现数据的高速传输[1]。


图2:发射机框图

2、控制系统组成

该控制系统要实现发射机的连锁保护,即发射机的冷却、电源、电子管、槽路中任一个参数出现异常,系统都能实现报警并采取相关的应急措施,确保系统的安全。现场控制的HMI(人机界面)是用西门子TP270组态设计的,可以实现本地操作如报警、记录、打印、参数的读取等。还能在控制室实现对冷却系统、电源、电子管的各极偏置、以及激励的远程操作;并且能在处于控制室的工业PC的HMI中显示系统的运行状态、加速电压(D电压)等相关参数。

2.1、控制系统的硬件配置

为实现以上要求,该系统采用了如图3所示的结构。现场以西门子S7-300 PLC和触摸屏TP270作为高频发射机的本地控制器和人机接口,然后经Ethernet和交换机接入已有的控制网络,最后通过以太网卡连到控制室工控机,完成远程控制。


图3:系统结构和S7-300PLC配置图

系统中所采用的PLC的配置如图3所示的配置。电源模块是PS305,能提供DC24V的电压和DC5A的电流。CPU 是313-2DP,此CPU模块自带32点DI/DO,而且有两路硬件产生最高频率为30KHZ的脉冲,以满足系统中脉冲调制和拖动槽路中步进电机所需的脉冲。采用SM338 模块读取通过SSI总线传来的电机绝对位置编码数据。为了便于通信,配置了通讯处理器CP3413-1模块,可以直接用双绞线与交换机SWITCH相连接入已有的控制网络。此外为了产生高精度的模拟量控制信号,采用了16位精度的SM332模块。采样信号都是4-20mA的信号,系统配置了SM331模拟量模块,以完成参数的测量。[page]

2.2、槽路微调电容的控制

当调节激励以改变发射机输出能量即改变D电压时,需同时改变微调电容,使耦合网络匹配,以减小反射系数[2] 。对微调电容的控制采用了如图4所示的闭环控制结构。当PLC收到来自本地TP270触摸屏的动作信号(本地控制模式);或者收到来自Wincc的动作信号(远程控制模式)时,就调用相应的功能块FC,产生脉冲和方向信号,经驱动器放大,拖动步进电机,改变电容板间距离,从而实现对电容容值的改变和耦合网络的匹配。 其中位置传感器采用的是SICK的ATM60 SSI绝对位置编码器,电容板的位置编码数据以SSI协议的格式,传送给S7-300的SM338 模块,通过Ethernet上传给处于控制室的工业PC,在Wincc组态的HMI中显示;同时通过Profibus把位置编码数据传给本地的触摸屏TP270,在Protool组态的本地人机界面中显示。


图4:槽路微调电容拖动控制简图

2.3、调理电路

为保证发射机各个系统参数的监测,采用了如图5所示的以TP521为核心的光隔离模拟测量调理电路[3],只要调节图中的可变电阻,并适当的设置SM331模块的系数因子,就能实现参数的准确测量;并在组态的HMI中显示,达到发射机参数远程监控的目的。


图5:参数测量调理电路

3、软件设计

系统的软件设计主要包括PLC软件设计、工业PC的上位的HMI设计以及本控触摸屏TP270的HMI设计。PLC的程序设计,主要实现现场的数据测量、状态监控、控制策略的判断和与上位机的Wincc数据通信。

在Wincc组态软件环境下,分别设计了发射机的操作流程图、状态监控图、参数测量显示图、参数趋势曲线图;并具有报警记录、报表生成、打印等功能。本地控制的触摸屏TP270的HMI设计是在Protool环境下组态完成的,其功能和Wincc组态的HMI大致相同。如图6所示其人机界面(HMI),分成了操作流程区域,发射机参数测量监控区域,发射机状态监控区域和功能选择区域。


图6:操作界面

[page]

Step7中程序循环组织块是OB1,通过判断来自上位工控机Wincc或触摸屏TP270的操作变量状态和PLC输入接点的状态,循环调用开关机功能块FC20,脉冲宽度调制生成块SFB49及背景数据块DB20,参数测量功能块FC21,激励信号调节功能块FC22,系统连锁保护块FC23,与DB通信的功能块FC24,整个程序结构如图7所示。当PLC加电初始化完成后,进OB1主循环块,并扫描功能块FC24实现与Wincc和TP270的通信,获取操作信息并接合PLC 的输入接点和辅助节点如M1.0,调用相应的功能块FC,完成相应的控制操作;同时把相关数据和参数状态通过FC24上传给Wincc,实现远程监控。在任何时刻系统参数出现异常,PLC都会调用连锁保护块FC23,使系统处于保护待机状态,并把故障显示到Wincc和TP270操作界面中告知系统运行者[3]。


图7:软件结构图

4、结束语

该系统采用了西门子S7-300PLC作为本地控制器,具有抗干扰能力强,运行可靠等优点。接合Profibus现场总线,以触摸屏TP270作为本地控制的人机接口设计,取代了以按钮、数码管、模拟表头等作为人机接口的方案;减少了系统的布线,简化了接口电路的设计等工作,并且具有设计简单、运行可靠、显示直观等优点。采用Wincc组态HMI,使上位机操作界面友好,状态显示直观,降低了操作难度,提高了自动化水平,节省了人力资源。

本文作者创新点:结合Profibus总线技术和触摸屏,改变了传统以按钮、数码管、模拟表头等作为人机接口的设计思路,在EMC(电磁兼容)恶劣的情况下,可靠的实现了发射机系统的控制。

关键字:PLC  触摸屏  发射机控制 引用地址:PLC及触摸屏的发射机控制系统设计方案

上一篇:PLC控制系统在气体调节中的应用
下一篇:电流互感器用于检测智能电表中的交流电流解析方案

推荐阅读最新更新时间:2024-05-02 22:04

PLC指令的基本类型 PLC指令如何输入
  PLC指令是可编程逻辑控制器(PLC)的指令集,也称为PLC编程指令。这些指令是用于编写和控制PLC程序的基本构建块,它们包括输入和输出指令、逻辑指令、数据处理指令、定时器和计数器指令、数值比较指令等等。PLC(可编程逻辑控制器)可以用于编写程序的指令,控制程序中执行的操作。   PLC指令基本类型通常包括以下几种:   1. 数据传送指令:包括MOV、LD、ST等指令,用于在PLC内部传送数据。   2. 算术运算指令:包括ADD、SUB、MUL、DIV等指令,用于执行基本的算术运算。   3. 逻辑运算指令:包括AND、OR、NOT等指令,用于执行逻辑运算。   4. 比较指令:包括CMP等指令,用于比较两个值是否相等
[嵌入式]
PLC中编写定时器和计数器的自复位功能
CTU:加法计数器 分析:当计数值达到5,Q输出M300.0=1,在下一周期时执行复位 指令,使得计数值清零,之后Q输出M300.0=0,实现自复位计数器 并产生脉冲。M300.0有一个从1变0的过程。 计数器自复位程序 CTD减法计数器 了解内容:减计数器和加减计数器。要先装载LD,再减。每当0.0从“0”变为“1”, CV减少1;当MD4=0时,Q=1,此后每当CD从“0”变为“1”, Q保持输出“1”,CV继续减少1直到达到计数器指定的整数类型的最小值。 在任意时刻,只要I0.2=1时,Q输出“0”,CV立即停止计数并回到PV值。 C TD减法计数器 TON:接通延时 定时器 按下启动按钮, 电机 运行5秒自动停
[嵌入式]
<font color='red'>PLC</font>中编写定时器和计数器的自复位功能
S7-200系列PLC自由通信口初始化及通信指令介绍
在该通信方式下,通信端口完全由用户程序所控制,通信协议也由用户设定。PC机与PLC之间是主从关系,PC机始终处于主导地位。PLC的通信编程首先是对串口初始化,对S7-200PLC的初始化是通过对特殊标志位SMB30(端口0)、SMB130(端口1)写入通信控制字,设置通信的波特率,奇偶校验位、停止位和字符长度。显然,这些设定必须与PC的设定相一致。SMB30和SMB130的各位及含义如下: 其中,校验方式:00和11均为无校验、01为偶校验、10为奇校验;字符长度:0为传送字符有效数据是8位、1为有效数据是7位;波特率:000为38400baud、001为19200baud、010为9600baud、011为4800baud、
[嵌入式]
S7-200系列<font color='red'>PLC</font>自由通信口初始化及通信指令介绍
西门子S7-200 SMART PLC知识科普
一、S7-200 SMART的数据主要分为: 1、与实际输入/输出信号相关的输入/输出映象区: I:数字量输入(DI)。 Q:数字量输出(DO)。 AI:模拟量输入。 AQ:模拟量输出。 2、内部数据存储区 V:变量存储区,可以按位、字节、字或双字来存取V 区数据。 M:位存储区,可以按位、字节、字或双字来存取M区数据。 T:定时器存储区,用于时间累计。 C:计数器存储区,用于累计其输入端脉冲电平由低到高的次数。 HC:高速计数器,独立于 CPU 的扫描周期对高速事件进行计数,高速计数器的当前值是只读值,仅可作为双字(32 位)来寻址。 AC:累加器,可以像存储器一样使用的读/写器件,可以按位、字节、字或双字访问累加器中的数据。
[嵌入式]
西门子S7-200 SMART <font color='red'>PLC</font>知识科普
PLC在扶梯控制系统中的应用
前言   扶梯电气控制已经发展到很高的阶段,特别是EN115-2008标准出版并施行后,对扶梯的安全要求不仅对人非常严格,而且对机器本身的安全检测也非常重视。扶梯的电气控制中,各种微处理器已经广泛应用,单片机、 PLC 、FPGA等等,这些微处理器的应用使扶梯的电气控制功能更强大,检测范围更广,检测时间更短。   PLC作为最可靠的一种微处理器,在工业控制中占有很重要的脚色。经过了长年的时间检验、各种严酷的工业环境的测试,已经发展成为最可靠的工业控制器。国内外PLC的生产厂家很多,竞争也非常的激烈,特别是小型PLC。   台达PLC作为其中的一员,以可靠的质量及合适的价格占有一席之地,而且不断的发展壮大。台达小型PLC
[嵌入式]
看得懂电气图、却看不懂PLC梯形图?
很多人说PLC难,就算有电工基础,想学会也很难!但是真的如此吗?有电工基础又该如何快速学会PLC呢?今天咱们一起来看看电工图如何快速转化成PLC梯形图,以三相感应电动机故障警报控制电路为例子说明: 传统电工图 (1)当电源正常时,仅绿灯gl亮,电动机不动作。 (2)当按下启动按钮pb1,电磁接触器mc动作,电动机立即运转,指示灯rl亮,绿灯gl熄。 (3)当按下停止按钮pb2,电磁接触器mc断电,电动机停止运转,指示灯rl熄,绿灯gl亮。 PLC梯形图 那么如何从传统电工图转换为梯形图呢?一起来看看吧: (1)将电工图中控制电路直接转成对应阶梯图。首先重新绘制电工图,将图中接点与输出线圈位置适度变更,以符合PLC阶梯图的
[嵌入式]
看得懂电气图、却看不懂<font color='red'>PLC</font>梯形图?
Linux-2.6.30.4在2440上的移植之触摸屏驱动
一、移植环境 主 机:VMWare--Fedora 9 开发板:Mini2440--64MB Nand 编译器:arm-linux-gcc-4.3.2 二、移植步骤 1. 准备驱动源码。因为linux-2.6.30.4内核中没有提供合适的ADC驱动和触摸屏驱动,所以这里就直接用友善提供的驱动 s3c24xx-adc.h #ifndef _S3C2410_ADC_H_ #define _S3C2410_ADC_H_ #define ADC_WRITE(ch, prescale) ((ch) 16|(prescale)) #define ADC_WRITE_GETCH(data) (((data) 16)&0x7)
[单片机]
Linux-2.6.30.4在2440上的移植之<font color='red'>触摸屏</font>驱动
今年笔记本电脑触摸屏将占11%
市场调研公司NPD DisplaySearch周二发布的报告显示,预计今年全球触摸屏笔记本电脑出货总量将达到1980万台,占据笔记本电脑出货总量的大约11%。 触摸屏笔记本电脑的出货在整个2013年一直处于增长之中。今年上半年,触摸屏笔记本电脑的出货量仅占到笔记本电脑出货总量的7%。笔记本电脑制造商一直在超薄笔记本电脑中采用触摸屏,让用户能够像平板电脑一样使用笔记本电脑。 华硕一直是最热衷于触摸屏笔记本电脑的厂商。目前,这家公司笔记本电脑出货中的20%均支持触摸屏。NPD DisplaySearch的数据也显示,华硕目前也是触摸屏笔记本电脑市场的龙头,市场份额达到了26.3%。索尼目前17.6%的笔记本电脑支持触摸屏,
[手机便携]
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved