1硬件结构
1.1EPM7128SLC84的主要特征
EPM7128SLC84是Altera公司生产的CPLD芯片,该芯片密度为6000门,有60个专用I/O口,PLC C84封装,正常工作温度范围0~70℃。该CPLD芯片内部结构如图1所示。
1.1EPM7128SLC84的主要特征
EPM7128SLC84是Altera公司生产的CPLD芯片,该芯片密度为6000门,有60个专用I/O口,PLC C84封装,正常工作温度范围0~70℃。该CPLD芯片内部结构如图1所示。
1.2AD574A主要特征和引脚说明
AD574A是单片高速12位逐次比较型A/D转换器,内置双极性电路构成的混合集成转换芯片;具有外接元件少,功耗低,精度高等特点,并且具有自动校零和自动极性转换功能。其主要功能特性如下:
分辨率:12位;转换速率:20μs;电源电压:±15V和5V;非线性误差:小于±1/2LSB或± 1LSB:数据输出格式:12位/8位;模拟电压输入范围:0~10V和0~20V,0~±5V和0~±10V两档四种;芯片工作模式:全控工作模式和单一工作模式。
AD574A的管脚示意图如图2所示。各引脚功能说明如下:
AD574A是单片高速12位逐次比较型A/D转换器,内置双极性电路构成的混合集成转换芯片;具有外接元件少,功耗低,精度高等特点,并且具有自动校零和自动极性转换功能。其主要功能特性如下:
分辨率:12位;转换速率:20μs;电源电压:±15V和5V;非线性误差:小于±1/2LSB或± 1LSB:数据输出格式:12位/8位;模拟电压输入范围:0~10V和0~20V,0~±5V和0~±10V两档四种;芯片工作模式:全控工作模式和单一工作模式。
AD574A的管脚示意图如图2所示。各引脚功能说明如下:
AD574A的CE、K128、CS、RC和A0对其工作状态的控制过程如表1所示。
图3给出的是CPLD和AD574A的接口电路。图中,标准JTAG接口与PC机并口相连,用于下载设计程序至CPLD中,并可在线编程,方便升级维护。芯片的83引脚接全局时钟脉冲输入,Q[11:0]是经过CPLD处理后的稳定数字信号输出。
由于系统的高速、高可靠性要求,软件设计部分采用了有限状态机FSM控制,状态机控制AD574A的原理如图4所示。
[page]
采样后的数据可在CPLD中进行进一步处理,并实时的进行控制,也可送至计算机进行统一处 理。随着电子设计自动化(EDA)技术的发展,基于可编程ASIC器件的数字系统设计的完整方 案将会越来越受到人们的重视,并且以EDA技术为核心的能在CPLD/FPGA上进行系统芯片集 成的自上而下的设计方法,将获得更加广泛的应用。
上一篇:步进电机控制器/驱动器优化步进电机系统设计
下一篇:基于14位D/A转换器的高精度程控电流源设计
推荐阅读最新更新时间:2024-05-02 22:14
基于VHDL的异步FIFO设计
先进先出缓存电路读/写(FIFO)在大规模逻辑设计中被广泛应用,几乎每个芯片都要涉及,同样在空空导弹的数据传输体系中也得以大量应用。FIFO类型可以分为两种,第一种为同步FIFO,即读/写时钟是同步的,这里的同步不仅仅是指读/写时钟为同一个时钟,即属于同一个时终域。当读/写时钟频率为倍数关系,即相位关系确定时,也归属同步FIFO的范畴。另一种为异步FIFO,读/写时钟频率不成倍数关系或相位关系不确定,即跨时钟域。异步FIFO可以在不同的时钟域之间快速方便地传输实时数据,因此在遥测数据传输中,异步FIFO实用性更好。然而如何正确地产生空满标志以及如果解决亚稳态问题是异步FIFO设计的难点。 1 FIFO结构 首先,典型
[电源管理]
羿步FIFO的VHDL设计
摘要: 给出了一个利用格雷码对地址编码的羿步FIFO的实现方法,并给出了VHDL程序,以解决异步读写时钟引起的问题。
关键词: FIFO 双口RAM 格雷码 VHDL
FIFO(先进先出队列)是一种在电子系统得到广泛应用的器件,通常用于数据的缓存和用于容纳异步信号的频率或相位的差异。FIFO的实现通常是利用双口RAM和读写地址产生模块来实现的。FIFO的接口信号包括异步的写时钟(wr_clk)和读时钟(rd_clk)、与写时钟同步的写有效(wren)和写数据(wr_data)、与读时钟同步的读有效(rden)和读数据(rd_data)。为了实现正确的读写和避免FIFO的上溢或下溢,通常还应该给
[半导体设计/制造]
基于MPC5634的控制器多路AD采样的设计
随着汽车对控制系统的要求和依赖性提高,AD采样的设计模块成为汽车控制器中重要的组成部分。AD采样的结果是汽车控制器控制执行器的依据,它的速率和精度在汽车控制中起着重要的作用。 本文主要介绍一种基于MPC5634的多路模拟信号采集方法,通过增强型直接内存访问(DMA)方式,自动在RAM和增强型队列式模数转换器eQADC模块之间转移数据,能高效和准确地完成对模拟信号的采集。 1 增强型队列式模数转换器eQADC模块 1.1 eQADC模块的结构 MPC5634的eQADC模块有两个可独立工作的ADC转换单元(ADC0和ADC1),40路模拟通道(可扩展),0~5V的转换范围,转换精度有8位、10位、12位三种精度可
[电源管理]
基于VHDL语言的智能拨号报警器的设计
目前,智能拨号 报警器 大多采用单片机作为控制核心,这种传统设计方法的特点是硬件和软件截然不同,设计中不可相互替代;而且硬件连线复杂,可靠笥较差。 硬件描述语言( VHDL )和可编程ASIC器件的广泛应用第一次打破了硬件和软件的屏障。基于VHDL语言、以EDA技术作为开发手段、采用现场可编程门阵列 FPGA (Field Porogrammable Gate Array)作为控制核心实现的与电话线连接的智能拨号远程报警器,与传统设计相比较,不仅简化了接口和控制,提供了系统的整体性能和工作可靠性,也为进一步提高系统集成创造了条件。 1 系统原理及组成 系统组成原理框图如图1所示。系统的控制核心是一片FPGA芯片,它
[安防电子]
为什么设计复杂系统如此之难?浅谈利用仿真攻克汽车系统
当今汽车行业所面临的挑战与电信行业十多年前所经历的类似。混合动力电动汽车和燃料电池汽车等新技术也促进了研发活动的日趋活跃,正如我们在手机演变成多媒体设备的进程中所看到的一样。同样,电信业面临着功耗和芯片尺寸限制的问题,而汽车设计师正努力将更多技术运用到过去仅仅是机械的设备中。 电子、电气、机械,硬件和软件组件以及将其相连接的网络正大力推动汽车设计的发展。车载电子设备数量的比重目前为40%,而且在不断上升,与此同时,电子控制单元的数量也在日益增加,并被分布到整个系统中,用以控制新应用的精密性和复杂性。电子控制单元能包含数百个软件组件,促使系统更多地采用多路复用技术,也提升了通信方面的要求。 不仅一般系统设计在整体上有所扩大,可以满足
[汽车电子]
基于VHDL的16路可调速彩灯控制器设计
0 引言 近年来,FPGA/CPLD发展迅速,随着集成电路制造工艺的不断进步,高性价比的FPGA/CPLD器件推陈出新,使FPGA/CPLD成为当今硬件设计的重要途径,与传统电路设计方法相比,FPGA/CPLD具有功能强大、开发周期短、投资少,便于追踪市场变化及时修改产品设计以及开发工具智能化等特点。在诸多FPGA/CPLD的设计语言中,VHDL语言作为一种主流的硬件描述语言,具有很强的电路描述和建模能力,能从多个层次对数字系统进行建模和描述,从而大大简化了硬件设计任务,提高了设计效率和可靠性,并在语言易读性和层次化、结构化设计方面,表现出了强大的生命力和应用潜力。 QuartusⅡ是Altera公司在21世纪初推出的
[安防电子]
用FPGA实现1553B总线接口中的曼码编解码器
引言
曼彻斯特码编码、解码器是1553B总线接口中不可缺少的重要组成部分。曼彻斯特码编解码器设计的好坏直接影响总线接口的性能。本文介绍的是MIL-STD-1553B接口中最曼彻斯特码的编码和解码器的设计实现。
在电子设计领域,可编程器件的广泛应用为数字系统的设计带来极大的灵活性,1片FPGA/CPLD芯片可替代上百个IC电路。同时,Altera公司开发的MAX+PLUS II和QUARTUS II软件,是完全集成化的可编程逻辑设计环境;Synplicity公司的Synplify是专门用于FPGA和CPLD的一种优秀逻辑综合工具;VHDL更是一种功能强大的硬件设计语言,可用简洁的代码描述来进行复杂控制逻辑的设计。所这些使得硬
[嵌入式]
羿步FIFO的VHDL设计
摘要: 给出了一个利用格雷码对地址编码的羿步FIFO的实现方法,并给出了VHDL程序,以解决异步读写时钟引起的问题。
关键词: FIFO 双口RAM 格雷码 VHDL
FIFO(先进先出队列)是一种在电子系统得到广泛应用的器件,通常用于数据的缓存和用于容纳异步信号的频率或相位的差异。FIFO的实现通常是利用双口RAM和读写地址产生模块来实现的。FIFO的接口信号包括异步的写时钟(wr_clk)和读时钟(rd_clk)、与写时钟同步的写有效(wren)和写数据(wr_data)、与读时钟同步的读有效(rden)和读数据(rd_data)。为了实现正确的读写和避免FIFO的上溢或下溢,通常还应该给
[半导体设计/制造]
小广播
热门活动
换一批
更多
最新嵌入式文章
更多精选电路图
更多热门文章
更多每日新闻
- Allegro MicroSystems 在 2024 年德国慕尼黑电子展上推出先进的磁性和电感式位置感测解决方案
- 左手车钥匙,右手活体检测雷达,UWB上车势在必行!
- 狂飙十年,国产CIS挤上牌桌
- 神盾短刀电池+雷神EM-i超级电混,吉利新能源甩出了两张“王炸”
- 浅谈功能安全之故障(fault),错误(error),失效(failure)
- 智能汽车2.0周期,这几大核心产业链迎来重大机会!
- 美日研发新型电池,宁德时代面临挑战?中国新能源电池产业如何应对?
- Rambus推出业界首款HBM 4控制器IP:背后有哪些技术细节?
- 村田推出高精度汽车用6轴惯性传感器
- 福特获得预充电报警专利 有助于节约成本和应对紧急情况
更多往期活动
11月16日历史上的今天
厂商技术中心