电容式触摸传感器触摸屏的实现原理

发布者:Ziyu2022最新更新时间:2012-11-08 来源: 21ic 关键字:电容式触摸  传感器  触摸屏 手机看文章 扫描二维码
随时随地手机看文章

随着混合信号技术的发展,可以利用基于噪声门限和手指门限的反跳法,实现按键开关状态之间的干净利落的转换,从而使得电容式触摸传感器成为各种消费电子产品中机械式开关的一种实用、增值型替代方案,另外,还提高了检测电路的灵敏度和可靠性。

触摸传感器的广泛使用已经有很多年了。不过,随着近期混合信号可编程器件的发展,使得电容式触摸传感器成为各种消费电子产品中机械式开关的一种实用、增值型替代方案。

对于典型的电容式传感器,规定其覆盖层的厚度为3mm或更薄。随着覆盖层厚度的增加,来传感手指的触摸将变得越来越困难。换句话说,伴随着覆盖层厚度的增加,系统调整过程将必须从“科学”跨越到“精益求精”。为了说明如何制作一个能够提升目前技术极限的电容式传感器,在本文所述的实例中,选用玻璃覆盖层的厚度为10mm。玻璃易于使用,购买方便,而且是透明的,因此您可以看到下面的感应垫。玻璃覆盖层还被直接应用于白色家电。

手指电容

所有电容式触摸传感系统的核心部分都是一组与电场相互作用的导体。在皮肤下面,人体组织中充满了传导电解质(一种有损电介质)。正是手指的这种导电特性,使得电容式触摸传感成为可能。

简单的平行板电容器具有两个导体,其间隔着一层电介质。该系统中的大部分能量直接*在电容器极板之间。少许能量会泄露到电容器极板以外的空间,而由这些泄露能量所形成的电场被称为“边缘场”。制作实用电容式传感器的部分难题在于:需要设计一组印制导线,将上述的边缘场引导到用户易接近的有效感应区域中。显然,对于这种传感器模式来说,平行板电容器并非上佳之选。

把手指放在边缘电场的附近将增加电容式传感系统的导电表面积。由手指所产生的额外电荷存储容量就是已知的手指电容CF。无手指触摸时的传感器电容用CP来表示。在本文中,它代表寄生电容。

关于电容式传感器的一个常见的误解是:为了使系统正常工作,手指必须接地。实际上,手指被传感的原因在于它带有电荷,而这与其是否悬空或接地完全无关。

传感器的PCB布局

图1显示了一块PCB的顶视图,该PCB实现了本例中的一个电容式传感器按键。

图1:传感器的PCB顶视图(online)

该按键的直径为10mm,这是一个成人指尖的平均尺寸。为该演示电路而组装的PCB包含4个按键,它们的中心相隔20mm。如图1中所示,接地平面也位于顶层。金属感应垫和接地平面之间设置了一个均匀的隔离间隙。该间隙的尺寸是一个重要的设计参数。如果间隙设置得过小,则过多的电场能量将直接传递至地。而如果间隙设置得过大,则将无法控制能量穿越覆盖层的方式。选择0.5mm的间隙尺寸可以很好地使边缘场透过10mm厚的玻璃覆盖层。

如图所示,PCB中的过孔将金属感应垫与电路板底面上的印制导线相连。当电场试图找到最短的接地路径时,介电常数εr将对进入材料中的电场能量的密度产生影响。标准玻璃窗的εr约为8,PCB的FR4材料的εr约为4,而白色家电中常用的耐热玻璃的εr大约为5。在本例中,采用标准的窗户玻璃。需要注意的是,在PCB上贴有玻璃纸,即3M公司的468-MP绝缘胶膜。

电容式传感系统101

该电容式传感系统的基本元件包括:一个可编程电流源、一个精密模拟比较器和一根用来按顺序传输一组电容式传感器信号的多路复用总线。在本文所讨论的系统中,一个弛张振荡器起着电容传感器的作用。该振荡器的简化电路示意图如图2所示。

图2:电容式传感弛张振荡器电路。(online)[page]

比较器的输出被送进脉冲宽度调制器(PWM)的时钟输入电路,该PWM负责对一个时钟频率为24MHz的16位计数器进行门控。传感器上面的手指使电容增大,从而导致计数值增加。就是基于这一原理来检测到手指的存在。该系统的典型波形示于图3中。

图3:电容式传感弛张振荡器电路的波形。(online)

该设备的实现原理图如图4所示。

图4:电容式传感电路原理图。(online)

为了实现电容式传感和串行通信,该电路采用了赛普拉斯的CY8C21x34系列中的PSoC IC芯片。该芯片包含一组模拟和数字功能块,这些功能块可由存储于板上闪存中的固件来配置。另一颗芯片负责处理RS232的电平移位,以便建立到主机的通信链接,并实现波特率为115,200的电容式传感数据记录。四个电容传感按键的引脚分配在图5的表中给出。PSoC是通过一个包含电源、地以及编程引脚SCL和SDA的ISSP接头来实现编程的。而通过一个DB9连接器将电脑与电容式传感电路板相连。

PSoC利用程序固件来配置,还采用一个5V工作电源和一个内部生成的24MHz系统时钟。对该24MHz时钟进行1:26分频,产生一个为实现115,200波特率的TX8模块时钟。电容传感用户模块选择以“周期法”(Period Method)来运行,在该工作模式中,计数在固定数量的弛张振荡器周期中累加。换言之,16位计数器值代表了一个与传感器电容成正比的周期。

代码段1(详见本刊网站)罗列了系统固件的功能。与设立电容式传感系统相关的大部分工作都已被编为一组由C程序来调用的标准CSR例行程序。例如:CSR_1_Start()负责配置PSoC的内部布线,以使电流源DAC与模拟多路复用器相连,而比较器与经过正确初始化的PWM和16位计数器相连。

调整传感器

每次调用上列程序中的调用函数CSR_1_Start()时,均对Button1的电容进行测量。原始计数值被存储于CSR_1_iaSwResult[ ]阵列中。用户模块还跟踪一个用于原始计数的基线。每个按键的基线值均为一个由软件中的IIR滤波器进行周期性计算的平均原始计数值。IIR滤波器的更新速率是可编程的。基线使得系统能够适应于由于温度和其它环境影响而引起的系统中的漂移。

开关差分阵列CSR_1_iaSwDiff[ ]包含消除了基线偏移的原始计数值。利用开关差值来决定按键目前的开/关状态。这可使系统的性能保持恒定,即便在基线有可能随着时间的推移而发生漂移的情况下也是如此。

[page]

图5显示了固件中实现的差分计数与按键状态之间的转移函数。

图5:差分计数与按键状态之间的转移函数。(online)

该转移函数中的迟滞提供了开关状态之间的干净利落的转换,即使计数是有噪声的情况下也不例外。这也为按键提供了一种反跳功能。低门限被称为“噪声门限”,而高门限则被称为“手指门限”。门限水平的设定决定了系统的性能。当覆盖层非常厚时,信噪比很低。在此类系统中设定门限水平是一项具有挑战性的工作,而这恰好是电容式传感设计技巧的一部分。

图6显示了一个持续时间为3秒的按键触压操作的理想原始计数波形。

图6:把门限水平绘制在一个去除了基线的原始计数图上

同时还给出了门限值。噪声门限被设定的计数值为10,而手指门限设定的计数值则为60。实际上,在实际计数数据中始终存在噪声分量,图中并未显示,以便能清晰地显示门限水平。

部分调整过程还包括选择电流源DAC的电平以及设置用于计数累加的振荡器周期数。在固件中,函数CSR_1_SetDacCurrent(200, 0)把电流源设定在其低电流范围内,数值为200(最高255),大约对应于14μA。函数CSR_1_SetScanSpeed(255)把振荡器周期数设定为253(255-2)。原始计数和差分计数的分析表明:该系统的寄生引线电容CP约为15pF而手指电容CF约为0.5pF。可见,手指电容使总电容产生了约3%的变化。对于每个按键,每个原始计数值的采集所需要的时间仅为500μs。

测量性能

电容式传感系统的性能测量结果示于图7中。

图7:通过10mm厚的玻璃进行检测时传感器的性能测量结果

[page]

通过一个终端仿真程序,在主PC上获得差分计数,然后借助电子制表软件加以绘制。将手指放置在10mm厚的玻璃覆盖层上,并持续3秒的时间。按键的开关状态被叠加在原始计数上。按键在这两种状态之间干净利落地转换,即使是由于通过厚玻璃进行检测而使原始计数信号中具有较大的噪声时也是如此。请注意手指和按键门限随着基线的漂移而进行周期性调整。当检测到手指的触压动作时,基线值将锁定,直到手指移开为止。

图8显示了两种状态转换处的局部细节图。

图8:开关状态转换局部细节图

在图9a中,按键初始状态为断(OFF)状态。超过手指门限的差分计数的第一个采样把按键状态转换至通(ON)状态。在图9b中,低于噪声门限的差分计数的第一个采样将按键转换至断状态。

与机械式开关相比,基于电容的触摸传感器的主要优点是耐用性好,不易损坏,可以长期使用。混合信号技术的近期发展,不仅使得触摸式传感器的成本在各种消费类产品中降到了具有成本效益的水平,而且还提高了检测电路的灵敏度和可靠性(因为增加了覆盖层的厚度和耐用性)。利用本文介绍的设计方法,说明通过一个10mm的玻璃来检测手指的按键触压是可能的,并利用基于噪声门限和手指门限的反跳法,实现了按键开关状态之间的干净利落的转换,从而使电容式触摸传感器成为机械式开关元件的一种实用型替代方案。

关键字:电容式触摸  传感器  触摸屏 引用地址:电容式触摸传感器触摸屏的实现原理

上一篇:水流量传感器的工作原理
下一篇:无传感器单电流检测的无刷直流电机控制

推荐阅读最新更新时间:2024-05-02 22:25

采用油腔波动声压测量压电式微压传感器的灵敏度
所周知,压电式压力传感器的性能主要用瞬变压力信号发生器和正弦信号发生器测量。瞬变压力信号发生器是指产生阶跃波或其他非周期信号的压力发生器,目前,主要用激波管阶跃压力发生器,它利用激波在流体中传播或者在一个刚性表面上反射产生阶跃压力,以激发传感器的自振,它尤其适用于测量高频响应的压力传感器。正弦信号发生器是一种产生正弦压力信号的装置,分为以下几类: (1)谐振空腔测量法:这种方法通常采用活塞、汽笛等激发密闭空腔的空气振动,产生周期变化的压力。一般谐振空腔的压力在峰值较小,而且,频率很低的情况下才是一个良好的正弦波,当压力峰值较大,频率较高时波型失真; (2)非谐振空腔测量法:其工作原理是设法调制通过容器的气流而产生周期变化的压力
[测试测量]
采用油腔波动声压测量压电式微压<font color='red'>传感器</font>的灵敏度
智能温度传感器DS18B20的原理与应用
DS18B20是美国DALLAS半导体公司继DS1820之后最新推出的一种改进型智能温度传感器。与传统的热敏电阻相比,他能够直接读出被测温度并且可根据实际要求通过简单的编程实现9~12位的数字值读数方式。可以分别在93.75 ms和750 ms内完成9位和12位的数字量,并且从DS18B20读出的信息或写入DS18B20的信息仅需要一根口线(单线接口)读写,温度变换功率来源于数据总线,总线本身也可以向所挂接的DS18B20供电,而无需额外电源。因而使用DS18B20可使系统结构更趋简单,可靠性更高。他在测温精度、转换时间、传输距离、分辨率等方面较DS1820有了很大的改进,给用户带来了更方便的使用和更令人满意的效果。 1DS18
[应用]
无线传感器网络硬件设计综述
引言   无线传感器网络WSN(Wireless Sensor Network)是一种由传感器节点构成的网络,能够实时地监测、感知和采集节点部署区的观察者感兴趣的感知对象的各种信息(如光强、温度、湿度、噪音和有害气体浓度等物理现象),并对这些信息进行处理后以无线的方式发送出去,通过无线网络最终发送给观察者。无线传感器网络在军事侦察、环境监测、医疗护理、智能家居、工业生产控制以及商业等领域有着广阔的应用前景。   在传感器网络中,传感器节点具有端节点和路由的功能:一方面实现数据的采集和处理;另一方面实现数据的融合和路由,对本身采集的数据和收到的其他节点发送的数据进行综合,转发路由到网关节点。网关节点往往个数有限,而且常常能量能够得到补
[单片机]
无线<font color='red'>传感器</font>网络硬件设计综述
以色列学者开发出可将红外光转为可见光成像的纳米薄膜
以色列著名研究型学府本-古里安大学(Ben-Gurion University of the Negev)的研究人员称他们开发出了一款低成本 红外传感器 ,能够打造全球最薄的夜视眼镜,并革新智能手机和自动驾驶汽车的红外夜视应用。 据麦姆斯咨询报道,本-古里安大学纳米科学技术Ilse Katz研究所的Gabby Sarusi教授开发了一款形似邮票的器件,一侧能够读取1500nm波长的红外光,并将红外光在另一侧转为人眼能够看到的可见光成像。这款器件基于一片仅0.6um厚的薄膜,这层薄膜包括纳米材料层、纳米柱和超薄金属箔片,这层神奇的薄膜能够将红外光转为可见光成像。 “该薄膜可以装配在普通眼镜或望远镜前方,使它们变身成为红外设备。也可以
[汽车电子]
iPhone 8全系均为黑色面板 传感器结构复杂
【PConline资讯】近日,网上曝光了iPhone 8白色面板的图片,一时间,不少果粉表示“好丑”,其实主要原因还是白色面板与黑色边框的不兼容性,即使采用全面屏设计,黑色的边框依然清晰可见。同样,苹果的死对头三星,今年发布的S8和Note8也是采用全面屏设计,并没有推出白色面板的版本,所有配色均采用黑色面板,这样与黑色边框有融合性。 不过最近,凯诺证劵分析师郭明池表示,他分析了iPhone 8“刘海”一些特性,郭明池认为,iPhone 8“刘海”当中将包含结构光发射器、距离 传感器 、结构光接收器、环境光传感器以及前置摄像头等多个传感器。所以,郭明池认为iPhone 8同样也不会推出白色面板,并表示iPhone 8采用的均会
[手机便携]
博世创新技术——仅凭视频传感器也可实现紧急制动
博世立体摄像头:行车安全辅助系统的单一传感器解决方案 配备博世立体摄像头的路虎全新发现运动版获得欧洲新车评价规程 (Euro NCAP) 安全辅助 类别最高评级 是目前汽车应用市场上最小的车载立体摄像头 符合汽车行业标准ISO 26262的ASIL B安全等级 紧急制动系统是目前最为有效的汽车辅助系统之一。在德国,紧急制动可避免高达72%因追尾造成的人身伤害。紧急制动系统通常需要借助雷达传感器或是雷达与视频传感器相结合才能实现;如今,博世开发的立体摄像头仅靠视频数据便可实现紧急制动系统。 博世立体摄像头作为一种使用单一传感器且行之有效的解决方案,适用于所有车型的多样化辅助功能。 博世董
[汽车电子]
博世创新技术——仅凭视频<font color='red'>传感器</font>也可实现紧急制动
惠斯顿电桥在汽车空气流量传感器上有何应用
一、热线/热模式空气流量传感器外形 空气流量传感器种类很多,目前应用最普遍的是热线和热模式,是质量流量型检测传感器。(提示:热线式取消自洁信号线就是五脚传感器) 二、热线/热模空气流量传感器实际应用 早前日产汽车热线式空气流量传感器除具有自清洁功能外,还设有一个可变电阻器,通过人工调节改变怠速时混合气的浓度,现今汽车发动机混合气已经广泛采用了闭环控制,混合气浓度不再需要人工调节,可变电阻器也随之被取消。 日产汽车热线式空气流量传感器 1.6L卡罗拉热线式空气流量传感器 捷达/桑塔纳热模式空气流量传感器 三、热线式/热模式空气流量传感器工作原理 利用热线或热膜作为发热元件的空气流量传感器,发热元件(热丝或热膜)电阻RH和
[嵌入式]
惠斯顿电桥在汽车空气流量<font color='red'>传感器</font>上有何应用
氨气传感器 NH3 CR-200
随着人们生活质量的提高,对工业生产以及生活条件的要求越来越高,人们对气体传感器的需求也越来越大。气体传感器的研发,尤其是有毒有害气体传感器的研究更是得到 迅猛发展 。
[模拟电子]
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved