基于广义预测的蒸氨槽氨压控制系统研究

发布者:GoldenEclipse最新更新时间:2013-01-25 来源: 21IC 关键字:广义预测  蒸氨槽氨压  控制系统 手机看文章 扫描二维码
随时随地手机看文章

1引言

钛黄粉既是冶炼金属钛和氯化法钛白粉的重要生产原料,也是一种性能良好的化学颜料,具有很好耐酸碱、抗高温的化学性质,并且防水、无毒,耐磨性、抗粉化性能很好。但由于其生产过程中产生的废液含有氯化铁和氯化亚铁等有害物质,引起越来越多的重视。废液若处理不当,将污染环境,危害人体健康。对于企业则导致排放废水不合格,连续生产受阻,进一步影响企业效益。从钛黄粉生产工艺了解,蒸氨作为废液处理的重要环节之一,必须严格控制其工艺指标。课题基于蒸氨槽氨气压力控制对象,进行氨压控制系统整体方案研究。



图1 纸页张力与牵引力的关系

蒸氨工序不仅为中和氧化槽提供反应原料氨气,也影响生化污水处理工序,是整个废液处理过程的关键环节。为了保证蒸氨生产过程的正常运行,其中最主要的是对蒸氨槽压力的控制。氨气出口压力过大,在后续的中和过程中,过高的出口压力使得喷射过量氨气与雾化的钛黄废液中和,中和液体的PH值将提高,难以达到排放标准。氨压过高,氨气在水中的溶解度越高,不易于氨气的挥发蒸出;氨压过低,则不易达到蒸氨所须的温度,蒸氨效果变差,脱氨不完全,致使槽底蒸氨废水含氨氮过高,影响生化处理工序的生产。在蒸氨工艺中,保持恒定的氨气压力工况是蒸氨过程以及后续中和氧化反应连续正常生产的必要条件。对于氧化铁红蒸氨槽,主要控制蒸氨槽槽顶氨压,具体来说,根据铁红生产工艺要求,蒸氨槽槽顶压力一般控制在20KPa左右。由于蒸氨槽氨压控制系统是一个非线性、时变性、大滞后的复杂控制系统,难以建立精确数学模型,在这种情况下传统的控制算法存在很多不足之处,如抗干扰能力差,参数不易实时在线调整等,因此一种适用于蒸氨槽氨气压力控制的算法有待研究。

铁红蒸氨操作是在蒸氨槽内进行的,中和氧化槽送入的原料氨水经加料板与所加碱液反应,在蒸氨槽内生成氨水混合液,然后与槽底通入的过热蒸汽在槽内塔板上下相遇,俩者之间发生汽液俩相传质传热过程至俩相平衡,经过槽内多层塔板反复操作后,氨水混合液的气液组分能够得到较为完全的分离,获得浓氨气产品。蒸氨槽顶部的氨蒸汽经分缩器,产生的冷凝液直接回流到蒸氨槽,浓氨汽经氨水槽送下一工段中和氧化槽进行中和氧化反应。



图2 铁红蒸氨工艺流程图

总的来说,铁红蒸氨槽蒸氨过程可以分为俩部分:一是反应阶段,即加入的碱液与中和氧化槽提供的原料氨水液在加料板装置发生化学反应,反应阶段生成待蒸馏的氨水混合液;二是精馏阶段,在铁红蒸氨槽内过热蒸汽和氨水混合液体经过上下逆流接触,在各层塔板上多次进行传质传热交换,每层塔板交换过后氨组分含量提高的气相从塔板上升,水组分含量提高的液相则沿塔板下降。反应混合物之间温度和浓度的差异造成的气液两相不平衡是发生传质传热过程的主要原因,蒸汽与氨水混合液在经过反复交换过程后理论上能够在槽内达成俩相平衡[1]。

因此,铁红蒸氨反应过程原理可归结为反应精馏。其中,过热蒸汽是蒸氨反应正常进行的重要条件之一。同时,为了防止反应过后槽内气液不平衡影响后续蒸氨过程运行和能耗等问题,蒸氨生产过程必须将产生的冷凝液回流到蒸氨槽内,从而保证蒸氨生产的连续运行。

2蒸氨槽氨压控制系统模型

考虑到蒸氨槽氨压控制的复杂性,为建立适合于氨压控制的数学模型,需对其进行简化,这里将系统简化为供料泵、反应容器、压力容器、管道四个部分。其中,反应容器指蒸氨过程的物理化学反应,原料氨水由供料泵送入到蒸氨槽经充分反应、精馏得到浓氨气产品;压力容器是假想的度量氨气产品缓冲容积容器;管道模型指包括反应滞后因素等的气体传输管道。



图3 铁红蒸氨槽氨压控制系统简化示意图

2.1给料泵控制模型

传统调节阀门开度大小的方来改变流量造成不必要的功率损失,不利于节能。从动力来源的角度出发,采用变频器调节给料泵的转速,从而改变流量大小。由于在调节转速的过程中,随着泵输出压头的降低,能够节省以前在调节阀上的阻力等做功浪费的功率。因此,对于如铁红蒸氨生产过程等工况变化较为频繁的给料泵,考虑采用变频调速来调节流量大小,以适应于蒸氨生产过程工况的变化情况,同时达到节能的目的。

在一定的压力条件下,忽略泵的内外泄漏量以及原料液被压缩的体积流量,转速与流量关系式如下:



式中Q为实际流量;V为泵的排量,指泵每一转所排出的介质容积,排量值由厂家给出,也可以通过几何关系自己测算,在泵空载情况下测量出流量再除以转速得到。从上式我们知道,泵的排量及效率为恒定值,得出给料泵的转速流量控制模型为线性比例模型,即可简化为:



2.2铁红蒸氨反应模型

蒸氨反应过程是一个复杂的气液俩相传质传热过程,在建立其反应模型时,必须对蒸氨工况特性和操作条件等进行必要的简化。在建立蒸氨过程的汽液平衡、物料平衡、能量平衡时,假设以下情况成立:

将蒸氨槽内混合物近似为具有理想特性的汽相和液相,利用Wilson方程推导求解;在槽内每层塔板上,其上下逆流的传质传热过程中汽液俩相完全混合、温度和浓度分布均匀;忽略反应过程中消耗的热量和过热蒸汽的动态特性[2]。[page]

假设条件成立的情况下,已知蒸氨过程中的工艺参数如槽的规格、负荷量、进料流量及浓度等,可以建立槽内每层塔板的MSEH方程,即物料守衡方程、能量守衡方程、汽液平衡方程、归一化方程。由于气相流量是通过板间压差计算的,如果逐板计算各板压力再求流量将会导致压力的值不稳定,难以得到反应模型控制的传递函数。联系蒸氨槽氨压控制系统的控制目标,需要加以简化计算求解过程。由于系统最终被控对象为氨压,因此在整个蒸氨过程中,可利用物料守恒中化学分子守恒即氨根离子守恒求出氨气量,再换算成氨压得到控制效果。设蒸氨槽进料流量为F,原料氨水浓度为C,以及塔板总的效率,由氨根离子物质的量守恒得如下方程:



氨气体积及质量流量:               



联立上述方程(3) (4) (5)并经拉普拉斯变换,得蒸氨槽入口氨气质量流量为:



这里n(s)为供料泵转速。

2.3出口调节阀及压力容器模型

蒸氨过程生成的氨气出口由调节阀控制,因此针对出口调节阀建模。线性调节阀质量流量为:



对其平衡点进行线性化和拉氏变换得:



其中为调节阀比例常数参数;为阀门两端的平衡点的压力;是气体的密度;为阀门初始开度;为阀门的开度;为阀门两端的压力。

蒸氨槽入口与出口的质量流量变化关系如下:



对其平衡点附近的线性化及对时间的拉氏变换得:



其中V为压力容器体积;是气体的密度;R为气体常数;气体温度;蒸氨槽的氨气压力。

 

2.4管道模型

忽略气体传输过程中管道损耗,由于输送管道很长,加上原料氨水反应及氨气蒸出过程的影响,管道内的气体传输过程必然造成严重的纯滞后。为便于分析,管道模型可以用简化,作为整个广义对象传递时延的独立环节,主要包括测量滞后、反应滞后、传输滞后等,为纯滞后时间,并且各单元模型 不同。

2.5蒸氨槽氨压系统模型

由前面各个单元建立模型,推导蒸氨槽氨压系统模型:





其中,为蒸氨槽氨气压力,为供料泵调节的气体质量流量,为通过调节阀门的气体质量流量,为阀门的开度。

                                 令



由上述公式推导得到蒸氨槽氨压控制系统数学模型为:

                                            

引入系统管道模型即延时环节得到:



由上式可知蒸氨槽氨压主要由供料泵的转速控制,出口调节阀阀门开度及出口端压力在一定范围条件下不变,得到转速对蒸氨槽氨压的传递函数为形如一阶惯性加纯滞后环节:



为比例放大系数,为惯性时间常数,表示纯滞后时间。这三个参数共同描述了被控对象的控制特性。其具体意义如下:

惯性时间常数T:被控对象在缺乏控制器调节的情况下,从接受外界输入时间开始,系统输出自行到达新的稳态值所需要的时间。它表征了被控对象动态响应的特性,如果时间常数增大,则相应系统输出响应后,恢复到新稳态值的时间也会增大。

滞后时间:实际系统控制过程中,当输入到被控对象的输入变量发生改变后,系统输出需要经过一定时间才会响应,使输出变化,这称为时延滞后。时滞特性存在于铁红蒸氨生产以及许多复杂工业过程控制中,其时间常数决定了被控对象滞后时间的快慢。

广义对象比例放大系数:这里的广义对象是指控制系统中不包括控制器的部分,具体有氨压控制对象,执行结构以及压力变送器等。比例放大系数属于静态增益参数,与时间变化无关。静态增益的含义为系统输出重新稳定后之前输入量的变化与输出量的变化的比值,在同一输入作用下,值越大,则系统输出表变化越大,系统输出影响对输入变化较为敏感,而系统被控对象的稳定性较差。相反若值越小,则被控对象的稳定性较好。

3蒸氨槽氨压广义预测控制

由前面对蒸氨槽氨压控制过程特性的分析,被控对象为一阶惯性加纯滞后环节,由于蒸氨过程中外界环境干扰参数变化导致模型失配,常规控制算法显然对蒸氨过程控制效果不佳。

针对铁红蒸氨过程控制中被控对象具有时滞性,并且依赖控制过程的精确数学模型特点,选择对于模型依赖程度较低、具有自适应能力以及鲁棒性较强的预测控制算法GPC。在铁红蒸氨槽氨压控制系统中,利用广义预测控制的多步预测及控制时域补偿时滞,判断未来的控制作用趋势,通过滚动优化作用求取当前最佳的控制作用即。同时由于具有模型在线辨识与反馈校正功能,对于参数变化及环境干扰模型失配等具有较强的自适应能力,因此铁红蒸氨槽氨压系统设计灵活方便,具有良好的控制性能和鲁棒性[3]。



图4 蒸氨槽氨压广义预测控制系统结构图[page]

3.1预测模型
假设被控对象基于阶跃响应的预测模型向量为,N为建模时域。当k时刻控制有M个控制增量时,可算出其未来时刻的输出值:



                              

3.2滚动优化

式(21)可写成向量形式:



考虑不希望控制增量变化过于剧烈,因此,k时刻的优化性能指标的向量形式可取为:



将式(3)代入式(4),并通过极值必要条件dJ(k)/dΔuM=0可求得 ,以构成实际控制作用于对象。下一时刻,它又提出类似的优化问题求出 ,即“滚动优化”策略。

3.3反馈校正
当k时刻把控制量u(k)施加于对象时,利用预测模型(2)可算出未来时刻的输出预测值 。但由于实际模型失配及环境干扰等影响,预测值可能偏离实际值[4]。输出误差 采用对e(k+1)加权的方式来修正对未来输出的预测:



式中: 为权系数组成的N维向量[4],

 为校正后的输出预测向量。经过移位后即可作为k+1时刻的初始预测值,用向量形式表示即为:





4系统仿真与分析

用MATLAB软件实现最小二乘法参数辨识,并带入实际记录数据,可得到蒸氨槽氨压控制对象的传递函数为[5]。



基于MATLAB为平台,通过simulink和M文件函数编程对得到的氨压控制系统模型进行PID和广义预测控制进行仿真,对比分析。其中PID参数经过整定后为:



广义预测控制算法仿真参数调试后为:柔化系数  ;预测时域 ;控制时域  ;控制加权常数;仿真如下图所示,包括无干扰标准情况仿真,有干扰信号仿真以及模型失配仿真。



图5 常规PID仿真                       图6 广义预测控制仿真



图7 广义预测控制阶跃扰动仿真            图8 广义预测控制随机噪声扰动仿真



图9 PID静态增益失配仿真                  图10 广义预测控制静态增益失配仿真

图5和图6比较,在无干扰标准情况下,PID控制系统超调量较大,动态响应进入稳态时间较长约为250s左右,而广义预测控制系统的响应速度很快,几乎没有超调量,调节时间在50s以内,其控制性能明显优于PID控制器,很好地满足蒸氨槽氨压控制系统的控制精度和控制要求。

图7和图8分别在150s的时间加入了阶跃信号扰动和随机白噪声干扰,从仿真结果可知广义预测控制具有自适应作用,能够消除一定范围外界内干扰情况对控制系统的影响,使误差较快地逼近0,达到系统稳定状态。

图10显示当模型不匹配静态增益失配时,广义预测控制器的输出性能变化很小,总体来说,广义预测控制算法具有很强的抗扰性能和鲁棒性,完全适用于铁红蒸氨槽氨压控制。

5结论

在确定铁红蒸氨槽氨压控制系统的模型参数,通过选择合适的参数基础上,分别采用PID控制器、广义预测控制器对蒸氨槽氨压控制系统的对象模型进行仿真,通过分析比较得出广义预测控制器的不仅对于干扰信号具有很好的抑制作用,而且能在模型失配的情况下快速响应,达到系统稳定状态,具有良好的控制效果以及自适应性和鲁棒性。

参考文献:

王坤.蒸氨装置的改造及运行情况分析[J].河南化工,2005,22(4):46-47.

左爱武.一种用于蒸氨生产的智能控制系统[D].武汉科技大学,2007

张嘉英,王文兰.锅炉水位控制系统的串级广义预测控制[J].电力自动化设备,2010,30(11):75-77.

符小琳.一种隐式广义预测自校正控制算法研究及仿真[J].工业仪表与自动化装置,2011,24(2):7-8.

李国勇.智能预测控制及其MATLAB实现[M].北京:电子出版社,2010.

关键字:广义预测  蒸氨槽氨压  控制系统 引用地址:基于广义预测的蒸氨槽氨压控制系统研究

上一篇:基于无线网络控制系统在沥青站的设计与应用
下一篇:一种四自由度码垛机器人机构和运动分析

推荐阅读最新更新时间:2024-05-02 22:32

基于SPCE061A的小车语音控制系统
  引言   语音控制系统是一种智能化系统,目前国内较成型的语音控制产品还不多,因此,进行这方面的研究是很有意义的。   SPCE061A是一款16位微控制器,其高速的处理和特殊的内核结构使它能够非常快速地处理复杂的数字信号,同时其内嵌32KB的FLASHROM和2KB的SRAM能够存储所需的数据和程序,特别是其所提供的语音识别函数可供方便地进行调用,不需要过多地考虑语音算法,为语音识别设计带来了很大的方便。本文选用SPCE061A作为该系统的控制核心,系统硬件结构如图1所示。   图1系统硬件结构图   方案论证   主控模块和语音处理模块的选择   较MCS-51系列单片机而言,SPCE061A单
[嵌入式]
基于单片机和Modbus协议的停车器控制系统
道岔是一种常见的铁路配件,在铁路的正常运行中,起着至关重要的作用。作为道岔控制系统的执行机构,转辙机(switch machine)是组成铁路道岔系统的重要零件。在编组站中,为了减少中间环节,列车停车器借用转辙机控制系统。编组站上的列车停车器控制系统的可靠性、安全性和操作的方便性对于提高铁路系统的安全性和效率、降低人力成本具有重要意义。为了配合控制和监督集中化的趋势,应该采用集控式控制,并且通过协议实现和计算机的单主机多从机系统,最终并入主系统。Modbus是一种开放的、免费的通讯协议,具有数据的安全性、物理媒介的广泛适用性和网络互连的多样性等优势。因此,我们自行设计了一种居于单片机和Modbus协议的双机通信控制系统。采用主从
[单片机]
基于单片机和Modbus协议的停车器<font color='red'>控制系统</font>
汽车电子CAN总线分布式控制系统应用方案
CAN总线是一种用于实时应用的串行通讯协议总线,为汽车行业而开发,以此取代昂贵而笨重的配电线束。 自出现以来,CAN总线在车辆的各个领域有着广泛的应用,包括货车、客车、火车、缆车、叉车和许多其它车辆。因为其实现了复杂的故障限制机制和控制算法,CAN协议如今是车辆内部网络通信的技术标准,而CAN总线是能够实现整车各电子控制装置之间的通讯数据转发的智能电控设备,也是所有车辆类型中汽车控制网络的灵活性强且性价比较高的解决方案。 CAN总线分布式控制系统 传统油车 主要使用CAN进行连接的电子控制模块包括引擎管理、悬置装置、巡航控制、传输、点火、HVAC、远距离信息技术和后照明等。汽车方面的应用包括两个类别:车身控制(针对乘客舒适
[嵌入式]
通用型矢量变频器在电梯控制系统中的应用
    MM440 是西门子公司生产的通用型矢量变频器它性能稳定质量可靠功能齐全在电梯行业首次使用MM440 在本系统中的应用如图1。        可编程序控制器PLC 和MM440 变频器之间的通讯可有两种方式一种是串行通讯,采用串行通讯只需一根双芯屏蔽电缆西门子专用它大大减少了布线的数量无须重新布线即可更改控制功能可以通过串行接口设置和修改变频器的参数还可以连续对变频器的特性进行监视和控制另一种是并行通讯,图中所示为端子控制端子1_8 10 16 17 为输入控制端子19_25 为输出控制端子然后定义每个端子的功能并且通过操纵面板设定其参数如P701=2 为上行P702=1 为下行P1001=48 为正常运行频率P1
[嵌入式]
基于51单片机的电梯控制系统设计
一.系统概述 系统使用的模块有AT89C51单片机+LCD1602显示屏+ADC0832+按键+小灯。 本次设计的智能路灯控制系统以AT89C51单片机为控制核心,使用LCD1602显示屏显示ADC采集回来的光照强度的数字电压信号,系统程序内设置光照强度阈值,在默认状态下为自动模式,此时调节电位器就能实现光照强度的调节,按下自动按键就会切换到手动模式,此时按下手动开和手动关按键就能控制小灯的亮灭。 二.仿真概述 1.使用LCD1602显示光照强度电压信号值。 2.为电梯的内外都设置了上下楼按键,按下就开始执行上下楼程序,左侧的指示灯会根据电梯上行和下行高亮,到达指定楼层后状态灯会直接亮起。 3.当按下上下楼按键后
[单片机]
基于51单片机的电梯<font color='red'>控制系统</font>设计
基于以太网工业总线的微电网控制系统实现方法
它不是一种具体的网络,是一种技术规范。   以太网是当今现有局域网采用的最通用的通信协议标准。该标准定义了在局域网(LAN)中采用的电缆类型和信号处理方法。以太网在互联设备之间以10~100Mbps的速率传送信息包,双绞线电缆10 Base T以太网由于其低成本、高可靠性以及10Mbps的速率而成为应用最为广泛的以太网技术。直扩的无线以太网可达11Mbps,许多制造供应商提供的产品都能采用通用的软件协议进行通信,开放性最好。     一种基于高速以太网工业总线的微电网 控制系统 实现方法,适用于由分布式电源、负荷和微电网监控平台等所组成的典型微电网系统。在微电网系统中,将分布式电源、负荷和微电网监控平台等通过统一EtherCAT
[嵌入式]
基于STC89C51的教室照明节能控制系统
大家在生活中或许见到过各种各样的节能产品,比如节能灯、变频空调、太阳能路灯、低耗电的液晶电视等。但是对于学生来说,校园中的节能应用似乎很少。再加上粗放式的用电管理模式,电能的浪费现象就处处可见了。教室照明用电占据了校园用电的多半部分,因此考虑如何将教室照明用电降至最低,就是要考虑如何实现教室照明的节能控制。   单片机以其低廉的价格和可靠的运行,取代计算机而成为了新一代的自动控制核心。该系统就是以单片机作为主控核心,应用热释电红外传感器、光电检测模块和计数模块作为前端信号采集,经过单片机的逻辑判断进而输出信号驱动继电器实现对日光灯的控制。    1 系统总体设计   该系统由7个部分组成。光强检测模块、热释电红外传感器和人
[单片机]
基于STC89C51的教室照明节能<font color='red'>控制系统</font>
基于Matlab/Simulink的BLDCM双闭环控制系统的仿真案例
Matlab/Simulink下,结合Simulink基础模块与S-Function,提出了无刷直流电机控制系统的设计方案。该系统采用双闭环控制:速度环采用PI控制,电流环由电流滞环比较器构成。仿真结果表明,该方案所设计的无刷直流电机控制系统具有快速、实用的优点。 1.引言 无刷直流电机(Brushless DC Motor,以下简称BLDCM)是随着电力电子技术及新型永磁材料的发展而迅速成熟起来的一种新型电机。以其启动转矩大、调速性能好、效率高、过载能力强、性能稳定、控制结构简单等优点,同时还保留了普通直流电机优良的机械特性,广泛应用于伺服控制、数控机床、机器人等领域。 随着BLDCM应用领域的不断扩大,对控制系统设计提出了
[嵌入式]
基于Matlab/Simulink的BLDCM双闭环<font color='red'>控制系统</font>的仿真案例
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved