基于神经网络的感应电动机直接转矩控制研究

发布者:平和宽容最新更新时间:2013-05-10 来源: 电子设计工程 关键字:电动机  变频  直接转矩控制  神经网络控制 手机看文章 扫描二维码
随时随地手机看文章
1 引言
    DTC技术利用空间矢量、定子磁场定向的分析方法,直接在定子坐标系下分析异步电动机的数学模型,计算并控制电动机的磁链和转矩。采用离散的两点式调节器(Bang-Bang控制),将转矩检测值与转矩给定值作比较,使转矩波动限制在一定的容差范围内,并产生PWM信号,直接对逆变器的开关状态进行控制,这样就获得了高动态性能的转矩输出。其控制效果取决于转矩的实际状况,它无需将交流电动机与直流电动机作比较、等效、转化,即不需要模仿直流电动机的控制。由于省掉了矢量变换方式的坐标变换与解耦,从而简化了异步电动机数学模型,没有通常的PWM信号发生器,因此其控制结构简单,控制信号处理的物理概念明确,系统的转矩响应迅速且无超调,是一种具有高静态、动态性能的交流调速控制方式。

2 系统结构及工作原理
   
基于神经网络控制的DTC系统的基本结构如图1所示。


    系统由速度给定值与转子反馈的速度信号形成误差信号,经过神经网络控制器的控制处理后获得转矩的给定值T*,转矩调节器的输入信号T*与转矩反馈值T的信号差为ET。调节器的输出信号是转矩开关信号,磁链调节器采用施密特触发器,容差±ε,通过磁链调节器的两点式调节,将磁链波动限定在±ε内,达到控制磁链的目的。开关状态选择单元采用离散的三点式调节方式。根据转矩调节器、定子磁链调节器的输出及定子磁链的扇区位置来选择合理的逆变器开关状态,用以输出合理的电压空间矢量。系统以TMS320LF2407A型DSP为核心组成控制器,由整流器、电压型逆变器构成主回路。整个系统按功率电路板、DSP控制板、电源、保护电路及信号检测电路等进行模块化设计。
    在该系统中,设置的转速调节器的输出作为电磁转矩的给定信号,用神经网络控制器取代通常的PI调节器,设置转矩控制内环。它可以抑制磁链变化对转速子系统的影响,从而使转速和磁链子系统实现了近似的解耦。
    因为定子磁链可表示为两相静止坐标系下电流iα1,iβ1和电压uα1,uβ1的非线性函数。电磁转矩可转换成两相电流和磁链的非线性函数。感应电动机在定子坐标系下的方程为:
    [page]

    由式(2)可得定子磁链模型结构如图2所示,在静止两相坐标系下电磁转矩表达式为:
    T=npLm(iβiα2-iα1iβ2)         (3)


    两相静止坐标系下的磁链方程为:

    由式(6)得转矩模型结构图如图3所示。


    在DTC技术中,其基本控制方法就是通过电压空间矢量us(t)来控制定子磁链的旋转速度及定子磁链运行状态,以改变定子磁链的平均旋转速度的大小,达到控制转矩的目的。DTC系统的核心问题:①转矩和定子磁链反馈信号的计算模型;②如何根据两个Bang-Bang控制器的输出信号来选择电压空间矢量和逆变器的开关状态。

3 神经网络PID控制器的设计
   
系统中应用的神经网络控制器由BP神经网络和控制器两部分构成。神经网络根据系统的运行状态调节控制器的参数,以期达到最佳的控制效果。人工神经网络的神经元结构如图4所示。


    人工神经网络是基于人脑的神经元结构的电子学模型,一个神经网络的基本执行要素是神经元。神经网络依赖于神经元的层数。人工神经网络对知识的掌握是通过对样本的学习实现的。通过学习大量的实例,网络用尝试错误的方法来不断减小错误,修正权值,从而掌握蕴含于样本的知识,网络通过权值的调整记录所学过样本,并掌握输入与输出之间的关系。正是因为它的可任意逼近非线性模型特性,所以十分适用于交流调速系统的控制。人工神经网络在交流调速控制系统中的应用包括神经网络辨识器和神经网络控制器的设计。在传统的数字PID控制方式下,采用的经典算式为增量式PID算法:
    u(k)=u(k-1)+△u(k)=u(k-1)+kp[e(k)-e(k-1)]+kie(k)+kd[e(k)-2e(k-1)+e(k-2)]        (7)
    神经网络根据系统的运行状态调节PID控制器的参数,使输出层神经元的输出状态对应于PID控制器3个可调整参数kp,ki,kd。通过神经网络的自学习,权系数调整,使神经网络输出对应于某种最优控制规律下的PID控制器参数。
    输入层神经元个数选为3,误差量x1(k)=e(k),x2(k)反映误差的累计效果,,x3(k)反映误差变化快慢,x3(k)=e(k)-e(k-1)。输出层的神经元个数选为3,输出节点分别对应kp,ki,kd。由于该参数不能为负数,所以输出层神经元的激发函数取非负的Sigmoid函数。隐藏层的神经元个数可由经验公式q=(n+m)1/2+f确定,其个数选为4。

    输出层神经元的激发函数。按梯度下降法修改网络的权系数,即按照e(k)对权系数的负梯度方向搜索调整,并附加一个使搜索快速收敛的全局极小惯性项。

[page]

4 实验结果
   
实验采用电机为三相鼠笼式异步电动机,测得磁通的α,β分量波形如图5a所示,电机气隙磁通轨迹如图5b所示。


    可见,电机的气隙磁场分布更加均匀,进一步改善了电机控制的性能。将该系统应用在矿山的牵引变频电机上取得了良好的效果。


    图6为系统突增负载和突减负载运行时电流、转速动态波形。可见,波形稳定平滑,超调量约为0.8%,动态速降约为5 r·min-1,静差率约为零。电机实现无静差调节且方便实现可逆运行。

5 结论
   
感应电动机的直接转矩控制具有结构简单,控制信号处理的物理概念明确,系统的转矩响应迅速且无超调等优点,是一种具有高静态、动态性能的交流调速控制方式。将神经网络控制和直接转矩控制相结合,由于神经网络结构简单,具有并行计算能力,缩短了计算时间,且控制算法不依赖或不完全依赖于对象模型,仅取决于系统的实际偏差及变化率,具有容错能力,因而系统具有较强的鲁棒性和对环境的适应性,使进一步提高开关频率成为可能,提高了系统的控制性能。

关键字:电动机  变频  直接转矩控制  神经网络控制 引用地址:基于神经网络的感应电动机直接转矩控制研究

上一篇:基于PLC和变频器的双馈电机控制技术研究
下一篇:高压变频器无速度传感器矢量控制转速辨识

推荐阅读最新更新时间:2024-05-02 22:39

如何用万用表判断电动机转速和极数
如果没有铭牌,又没有转速表,在不拆开电动机的情况下,可用判断电动机的转速。 用万用表的最小毫安档分别接上面已经判断出来的某一个绕组的首端和尾端,将转子慢慢匀速转动一圈,看万用表指针摆动几次,如果摆动一次,说明电流正、负变化一个周期,可以判断它是2极电动机。同样理由,摆动2次判断它是4极电动机,摆动3次判断它是6极电动机,依次类推。 判断出电动机的极数,就可知道它的大致转速(略低于同步转速)。电动机的同步转速与磁极数的关系,在频率为50hz时基本可以这样推算:二极为3000r/min,四极为1500r/min,六极为1000r/min。 在操作时,万用表表笔与端子要保持接触良好。否则,转动转子的过程中表针均会摆动,判断不
[测试测量]
智能薄感 体验格力U铂1赫兹变频空调
  随着科技的发展,家电已不单单给我们展示其简单的用途,家电本身虽配备的科技卖点以及产品优势在日益完善我们的生活。您见过厚度仅为15.3CM的空调么?您知道1赫兹变频究竟有何优势么?那么您一定要关注笔者今天给大家带来的 格力 U铂1赫兹 变频空调 。    格力 KFR-26GW/(26561)FNBa-2U铂空调有着多种色彩的面板可选,空调实现超薄完美机身的结合,空调厚度从23CM缩减到15.3CM,虽然在数值上变化甚微,但是从体积以及视觉上还是有着很大的差异,让空调更加小巧、精美。 格力 KFR-26GW/(26561)FNBa-2正面展示 格力 KFR-26GW/(26561)FNBa-2侧面薄型展示
[家用电子]
智能薄感 体验格力U铂1赫兹<font color='red'>变频</font>空调
微能变频器调试指南--绞车提升机
一、系统介绍 绞车提升机械(也有称之为电动葫芦机械)的提升是运送物料时,把物料提高或放低的功能,根据绞车提升机械的功率大小,提升的物料重量不等,在选型电机和变频器时,一定需要满足:电机的额定负载能力能够满足提升最大载荷时的要求,变频器要与选定电机匹配,变频器不得小于电机的功率。提升应用要求变频器输出力矩大,尤其是低频力矩要大,无抖动,速度响应快,物料下放过程中会产生再生能量,要考虑再生能量的妥善处理,不能出现故障跳闸。 WIN-V63系列变频器满足绞车提升机械应用的需求,其主要特点是:体积小,占用控制柜空间较小;力矩能力强,尤其是低速转矩能力强,0.5HZ时起动转矩能够达到180%以上;载波频率范围0-16kHz,有效的减小了系统
[电源管理]
微能<font color='red'>变频</font>器调试指南--绞车提升机
变频器的组成及分类
变频器的组成 变频器是一种电源转换装置,将输入给变频器固定频率,固定电压的三相交流电,转换成可调频率和可调电压的三相交流点,主要由整流(交流变直流)、滤波、逆变(直流变交流)、制动单元、驱动单元、检测单元微处理单元等组成的。 三相交流电经整流滤波变为直流,直流再逆变为频率电压任意可调的三相交流电。直流中间环节并联电容,由于大电容的作用,主电路直流电压比较平稳,内阻很小,具有电压源的特性,属电压型变频器,在异步电动机的调速系统中,因电动机为感性负载,电容同时兼作缓冲无功功率的储能元件。 逆变部分采用为门极可关断晶闸管。逆变部分的每个桥臂均由一个门极可关断晶闸管和一个反向并联的续流二极管所组成,续流二极管的作用是为负载的滞后电
[嵌入式]
<font color='red'>变频</font>器的组成及分类
台达变频器干扰案例问题分析及其处理
  1 引言   交流感应异步电动机变频器调速是20世纪电气传动领域划时代的技术进步。随着变频器的广泛应用,变频器日益成为工厂自动化领域最大的电磁污染源。可以经常的看到在一间设备密集型工厂装机几十台上百台变频器。变频器直—交逆变器的非线性等效负荷使得变频器在许多系统集成工程中不仅污染工厂供电系统,还直接对自动化工程项目干扰,引起测控系统失准失灵,严重破坏大系统的稳定性,甚至变频器自身受到干扰引发“自举”式的调速故障。尽管国际标准对电气设备 EMC(IEC61000系列电磁兼容设计)有严格的规范,并且中国国家质量技术监督局已决定在国内“等同”采用,同时,中国国家标准电能质量公用电网谐波GB/T 14549-93已经生效14年之久,
[电源管理]
开关变压器技术在大中型电动机软起动上的应用
一、概述   普通鼠笼式电动机在空载全压直接起动时,起动电流会达到额定电流的5~7倍,甚至达到10倍。电动机直接全压起动时的大电流在电机定子线圈和转子鼠笼条上产生很大的冲击力,加大了定子线圈(尤其是端部)与铁芯的磨损,会破坏绕组绝缘;冲击力也容易引起鼠笼断裂,导致电机故障。电动力的大小与电流的平方成正比。直接全压起动时的电动力是正常额定运行时电动力的36倍(按Imax=6IN)。   电动机直接全压起动时,额定电压瞬时加在电机绕组上。此时会产生操作过电压,在最不利的情况下过电压会达到额定电压的5倍,这对电机绝缘将造成极大的伤害。许多电机的损坏发生在合闸时就是由于产生操作过电压的原因。   当电动机容量相对较大时,过大的起动电流将引起
[嵌入式]
PLC应用:三相感应电动机故障警报控制电路图
PLC程序设计,一般均采用直觉法,也就是说它植基于电路设计者本身之学习经验,较为主观及直接。须经历一段瞎子摸象的尝试错误(tryanderror)时期,对程序进行除错之后才能符合所需功能或动作要求;因此设计出来的程序因人而异,除了原程序设计者之外,使用者或维修人员较不易理解其动作流程,亦即程序的可读性较低。 但程序设计其实有些许脉络可循,只是坊间的书籍很少提及这一部分。以下姑且抱着野人献曝的心情,以『三相感应电动机故障警报控制』电路为例,由传统电工图转换为阶梯图的过程,浅谈程序设计,相信尔后对于相关的回路转换或程序设计,您或许可触类旁通。 传统电工图 已知的三相感应电动机故障警报控制电路,其传统电工图,如图1所示: 图
[嵌入式]
PLC应用:三相感应<font color='red'>电动机</font>故障警报控制电路图
变频器主要的用途及变频器故障诊断与维修
一、变频器主要的用途是什么? 变频器主要由整流(交流变直流)、滤波、逆变(直流变交流)、制动单元、驱动单元、检测单元微处理单元等组成。变频器靠内部IGBT的开断来调整输出电源的电压和频率,根据电机的实际需要来提供其所需要的电源电压,进而达到节能、调速的目的,另外,变频器还有很多的保护功能,如过流、过压、过载保护等等。随着工业自动化程度的不断提高,变频器也得到了非常广泛的应用。 具体而言,变频器包含且不至于以下用途: 1、空调负载类 写字楼、商场和一些超市、厂房都有中央空调,在夏季的用电高峰,空调的用电量很大。在炎热天气,北京、上海、深圳空调的用电量均占峰电40%以上。 因而用变频装置,拖动空调系统的冷冻泵、冷水泵、风机是一项非
[嵌入式]
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
随便看看
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved