单总线温度传感器的EDA控制方法

发布者:温柔的爱情最新更新时间:2013-05-23 来源: dzsc关键字:单总线  温度传感器  EDA控制 手机看文章 扫描二维码
随时随地手机看文章

  1 硬件接口电路

  DS18B20是单总线数字温度传感器,测量温度范围从-55℃到125℃,测量精度为±0.5℃,通过单总线可直接输出所测温度的二进制数据,数字量的输出位数可通过编程控制,在9位至12位(含符号位)之间选择。该器件有三个端口,分别是电源端、地端、单总线数据端,在使用时将FPGA的I/O口和DS18B20的单总线连接,通过单总线实现FPGA与DS18B20之间的数据收发,接口电路如图1所示。

  2 软件控制程序

  控制DS18B20进行温度测量和读取主要包括三个步骤:器件初始化、发送写寄存器命令和发送读寄存器命令,该功能代码写在核心控制模块中,软件流程如图2所示。其中初始化是通过FPGA向总线发送低电平复位信号,持续时间为480-600us,然后FPGA释放总线,单总线经过上拉电阻会被拉至高电平,当DS18B20检测到上升沿之后,等待15-60us后将发出60-256us的低电平存在脉冲作为响应,如果FPGA检测到响应脉冲则初始化成功。

  初始化成功后,FPGA通过向总线发送命令来控制传感器的温度采集,程序中用到的主要命令如下:0XCC为跳过ROM检测命令;0X44为启动温度转换命令;0XBE为从DS18B20读取温度测量数值。

  在顶层代码中除了核心控制模块外,还包括包括分频模块和显示模块。

  其中,分频模块将实验板上50M Hz时钟转换为1MHz输出到核心控制模块,用于控制FPGA对单总线的读、写时序。

  显示模块用于将读取到的温度数据转换为十进制数据,并通过数码管进行动态显示。由于温度寄存器默认采用12位二进制数据来存储,最高位为符号位,温度分辨率为0.0625℃,如图3所示。当温度为正数时符号位为0;当温度为负数时符号位为1,且数据位采用补码的形式。因此,将温度转换成十进制数据时,首先判断符号位,当符号位为1时,先由二进制数据求出原码,再转换为十进制,最后乘以温度分辨率0.0625得到实测温度;当符号位为0时,直接将二进制转换为十进制,再乘以温度分辨率。

  3 系统顶层文件

  将编译好的sof程序下载到实验板中运行,能够实现环境温度的测量和显示,实际效果如图5所示。基于以上方法的温度控制系统硬件电路简单,实时性强,能够进行多路温度监控,应用范围广泛。

关键字:单总线  温度传感器  EDA控制 引用地址:单总线温度传感器的EDA控制方法

上一篇:以CAN总线为例介绍局部网络管理的概念及实现
下一篇:一种基于FPGA的接口电路设计

推荐阅读最新更新时间:2024-05-02 22:40

51单片机入门 - DS18B20温度传感器
DS18B20——温度传感器,单片机可以通过 1-Wire 和 DS18B20 进行通 信,最终将温度读出。1-Wire 总线的硬件接口很简单,只需要把 18B20 的数据引脚和单片 机的一个 IO 口接上就可以通信。最高12为的温度存储值,补码形式存储。 2字节,LSB低字节,MSB高字节,-55~125 1、初始化 检测存在脉冲:总线上存在DS18B20,总线会根据时序要求返回一个低电平脉冲。单片机要拉低这个引脚,持续大概 480us到960us之间 的时间即可,我们的程序中持续了 500us。然后,单片机释放总线,就是给高电平,DS18B20 等待大概 15 到 60us 后,会主动拉低这个引脚大概是 60 到 240u
[单片机]
数字温度传感器接口选择
热敏电阻、热电偶、模拟硅温度传感器和镍/铂电阻式温度检测器(RTD),需要进行校准以达到所需的温度精度。作为混合信号器件的数字 温度传感器 则不需要进行校准,它们具有集成数字逻辑,工作温度范围为-55℃到50℃,采用绝对温度比例(PTAT)电路,通过检测二极管的基极-发射极电压(VBE)的变化来测量本地/远程温度。它具有简单的集成硬件来保存温度值并对温度设定点、器件工作模式、睡眠模式以及快/慢转换速率进行编程设定。数据通过IC间总线(I2C总线)、系统管理总线(SMBus)或串行外围接口(SPI)来通信。   具体来说,数字温度传感器的主要构成包括一个双电流源、一个Δ-ΣA/D转换器、数字逻辑和一个通向数字器件(如与一个微处理器
[模拟电子]
数字<font color='red'>温度传感器</font>接口选择
热电偶温度传感器工作原理
热电偶是一种感温元件,是一次仪表。它直接测量温度,并把温度信号转换成热电动势信号, 通过电气仪表(二次仪表)转换成被测介质的温度。热电偶测温的基本原理是两种不同成份的材质导体组成闭合回路,当两端存在温度梯度时,回路中就会有电流通 过,此时两端之间就存在电动势——热电动势,这就是所谓的塞贝克效应。两种不同成份的均质导体为热电极,温度较高的一端为工作端,温度较低的一端为自由 端,自由端通常处于某个恒定的温度下。根据热电动势与温度的函数关系, 制成热电偶分度表; 分度表是自由端温度在0℃时的条件下得到的,不同的热电偶具有不同的分度表。 在热电偶回路中接入第三种金属材料时,只要该材料两个接点的温度相同,热电偶所产生的热电势将保持不变,
[嵌入式]
单总线协议转换器在分布式测控系统中的应用
摘要:介绍DS2480B UART/RS232至单总线协议转换器的主要特性、工作原理、接口技术,并具体阐述DS2480B在农业温室分布式测控系统设计中的应用。 关键词:DS2480B 单总线 RS232  分布式测控 单总线技术是美国Dallas半导体公司近年推出的新技术。它将地址线、数据线、控制线合为1根信号线,允许在这根信号线上挂接数百个单总线器件芯片。基于单总线的每个芯片内部均有1个出厂前被光刻好的64位ROM序列号,它可以看作是该芯片的地址序列码。 开始8位是产品类型标号,如DSl8B20为28H,DS2450为20H等;接着的48位是该芯片自身的序列号,用以保证在同类芯片中的唯一性;最后8位是前面56位的循环冗余
[单片机]
基于EDA的交通灯控制系统
  引言    EDA 技术是用于电子产品 设计 中比较先进的技术,可以代替设计者完成电子 系统 设计中的大部分工作,而且可以直接从 程序 中修改错误及系统功能而不需要硬件电路的支持,既缩短了研发周期,又大大节约了成本,受到了电子工程师的青睐。   实现路口交通灯系统的控制方法很多,可以用标准逻辑器件、可编程序 控制器 PLC、单片机等方案来实现。但是这些控制方法的功能修改及调试都需要硬件电路的支持,在一定程度上增加了功能修改及系统调试的困难。因此,在设计中采用EDA技术,应用目前广泛应用的VHDL硬件电路描述语言,实现交通灯系统控制器的设计,利用MAXPLUSⅡ集成开发环境进行综合、仿真,并下载到CPLD可编程逻辑器件中,
[应用]
汽车温度传感器的检测方法
  常用的   如上图所示。   1.用万用表检测冷却液温度传感器   (1)在车检查。将点火开关关闭,拆下传感器的连接器,用汽车专用万用表的Rx1挡,测试传感器两端子的阻值。以皇冠3.O的THW和E2端子为例,在温度为0℃时,电阻为4—7kΩ;在温度为20℃时,电阻为2~3kΩ;在温度为40℃时间,电阻为O.9一1.3kΩ;在60℃时为O.4~0.7kΩ,在80℃时,为0.2~O.4kΩ。冷却液温度传感器的电阻值与温度的高低成反比。   (2)单件检查。拆下冷却液温度传感器导线连接器,然后从发动机上拆下传感器。将传感器置于烧杯内的水中,加热杯中的水。随着温度逐渐升高。用万用表电阻挡测量传感器的电阻值,将测得的值与
[嵌入式]
布里渊散射型分布式光纤温度传感器频域分析法
布里渊散射光也是光在光纤中传输时由非弹性光子与热运动产生的声子发生的一种非弹性碰撞。散射光的频移量与温度的关系式为,其中T0为参考温度,Vb(T0)为温度为T0时的频移,Ct为温度系数如果让泵浦光和探测光分别从光纤的两头注入,并且当两者的频率差在光纤中某区域与布里渊频移量相等时,就会产生受激布里渊效应。若泵浦光能量较高,则泵浦光的能量就会向探测光转移,利用此物理过程可以实现温度的分布式测量。 基于布里渊频域分析法(BOFDA)的分布式光纤传感器也是通过网络分析仪测出光纤的复基带传输函数,从复基带传输函数的幅值和相位来提取所携带的温度信息,达到温度的分布式测量。 图2 布里渊光频域分析法原理框图 由前面的分析
[嵌入式]
LM135温度传感器及其应用
    LM135/LM235/LM335是美国国家半导体公司推出的精密温度传感器,它工作与齐纳二极管相似,其反向击穿电压随温度按+10mV/k的规律变化,可应用于精密的温度测量设备。它有三种封装形式适合于各类要求的仪器仪表要求,其主要功能特性如下:      直接在绝对温标校准      1℃的精确度      工作电流400uA—5mA      动态阻抗1Ω      便于校准      宽工作温度范围2001℃      低成本     图2是LM135的内部原理图,V15和V16是感温元件,这两个三极管的物理结构有着特定的要求,V15的发射结面积是V16发射结面积的10倍。它们的集电极负载电阻完全一致,
[嵌入式]
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
随便看看
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved