液晶显示器由于具有低压、微功耗、显示信息量大、体积小等特点,在移动通信终端、便携计算机、GPS卫星定位系统等领域有广泛用途,成为使用量最大的显示器件。液晶显示控制器作为液晶驱动电路的核心部件通常由集成电路组成,通过为液晶显示系统提供时序信号和显示数据来实现液晶显示。本设计是一种基于FPGA(现场可编程门阵列)的液晶显示控制器。与集成电路控制器相比,FPGA更加灵活,可以针对小同的液晶显示模块更改时序信号和显示数据。FPGA的集成度、复杂度和面积优势使得其日益成为一种颇具吸引力的高性价比ASIC替代方案。本文选用Xilinx公司的SpananIII系列XC3S200器件,利用硬件描述语言Verilog设计了液晶显示拧制器,实现了替代专用集成电路驱动控制LCD的作用。
1 功能分析与设计要求
液晶显示模块(LCM)采用深圳拓扑微LM2028、STN图形点阵液晶显示模块,5.7in,320×240点阵,逻辑电压输入为3.0~5.0V,4位控制接口,具有行列驱动电路,白光LED背光源。表l为该液晶显示模块的引脚功能描述。
液晶显示器的扫描方式是逐行扫描,当一行被选通以后,这一行中的各列信号同时加到列上,并维持一个扫描行的时间。这一行维持时间结束后,即选通下一行,同时各列电极也施加下一行的显示电压。
列驱动器逻辑电路由移位寄存器和锁存器构成,在一个显示数据位移脉冲信号CP作用下,将一组显示数据(4位)位移到寄存器中并保持。当下一个CP到来后。移位寄存器中第1位显示数据被移至第2位,这样在80个CP脉冲作用下,一行显示数据被存入寄存器后,寄存器并口对接锁存器,在锁存脉冲LP的作用下,该行数据被锁存到锁存器内输出给列电极。锁存脉冲LP的间隔为一个行周期,而行移位脉冲间隔也为一个行周期,因此二者是一致的。
帧扫描信号FLM即为行选通信号,脉宽为一行时间,在行移位脉冲LP作用下,存入移位寄存器后逐行位移,在一帧的最后一行输出高电平,代表下一帧的开始。M为液晶显示交流驱动波形信号,即一帧改变一次波形的极性,防止液晶单方向扭曲变形。更为详细的时序关系如图1所示。
2 设计与实现
2.1 液晶控制器总体设计
本设计的液晶显示器刷新频率为70 Hz,每一帧周期为14.28ms,每一行周期为60μs,时钟信号CP的频率为2 MHz,将一行数据输入列移位寄存器的时间为40μs,因此每一行设计了20μs的空白时间。 [page]
液晶控制器系统原理如图2所示。时钟模块采用Xilinx公司的Coregen IP工具定制,数字时钟管理器DCM模块将FPGA 50 MHz时钟信号CLK_IN 25分频为2 MHz控制器时钟信号CLK。DCM采用了数字延迟锁相环技术来消除时钟相位的位移,提供比自行分频更稳定的时钟信号,以满足控制系统要求。CONTROLLER模块为LCM提供满足图l所示时序要求的控制信号CP、LP、FLM、M、DISPOFF,并且同步产生SRAM的读地址ADDRA[14:0]。
SRAM为内存模块。为了提高输入LCD的数据流速度.设计了32K×4位的舣端口内存,可同时实现读/写,并实现数据格式的转化,由上位机MCU输入的8位数据转为输入LCM列驱动器的4位数据;B端口由MCU_INTERFACE与上位机MCU连接,由MCU微控制器将显示数据写入内存SRAM。其中,ADDRB[13:0]控制16K×8位的写地址,DINB[7:O]为写入数据,WEB为写有效控制,CLKB为写时钟;A端口由CONTROLLER模块控制读地址ADDRA[14:0],读时钟CLKA由系统时钟信号CLK控制,DOUTA[3:0]将数据写入LCM列驱动器。
2.2 控制模块设计
应用状态机的方法,用Verilog硬件描述语言设计控制模块CONTROLLER。CLK为2 MHz输入时钟信号。LP和内部控制信号DEN由状态机1控制产生,FLM由状态机2控制产生,M由状态机3控制产生,CP信号和ADDRA[14:0]根据CLK和DEN信号控制得到。状态机1有3个状态:状态1,LP为O,DEN为1,持续80个CLK脉冲后转向状态2;状态2,LP为l,DEN为0,持续1个CLK脉冲后转向状态3;状态3,LP为O,DEN为O,持续39个CLK脉冲后转向状态1。状态机2有2个状态:状态1,FLM为l,持续1个LP周期时间,即120个CLK脉冲;状态2,FLM为O,持续剩下的239个LP周期,即28 680个CLK脉冲。状态机3有2个状态,状态l,M为1。持续1个FLM周期时间,即28800个CLK脉冲;状态2,M为0,也持续1个FLM周期时间。CP信号和ADDRA由于含有空白信号,所以由内部控制信号DEN和时钟信号CLK得到。以下为设计的源代码初始化部分:
[page]
3 仿真、下载测试分析
在ISE6.3环境下完成控制器设计后,在MODELSIM6.1b环境下完成仿真测试,波形如图3所示。
仿真波形结果符合设计要求。完成仿真后,经过综合实现,生成编程文件并且通过下载软件实现对Xilinx公司FPGA器件XC3S200编程,并用泰克逻辑分析仪TLA721分析测试,所得结果如图4所示。
图4中各控制信号之间的时序关系完全符合设计要求。测得一个CP脉冲周期为500ns,在每行结束处有40个CP脉冲周期约20μs的空白信号;LP周期为60μs,高电平持续时间为500 ns,即一个CP周期;FLM周期为14.28 ms,约为70 Hz,高电平持续时间为60μs,即1个LP周期。测试结果表明,本设计液晶控制器完全符合LCM对控制信号的要求。
结语
利用硬件描述语言Verilog设计LCM控制器的方法,具有减小电路板尺寸、易于集成到片上系统、缩小系统体积、方便修改、适应不同液晶显示器等特点,具有很好的可重用性;同时也是后续开发其他种类液晶显示控制器的基础。
本液晶显示控制器与MCU组成显示系统后,MCU将显示数据写入SRAM中,控制器将显示数据读出并与控制信号同步送入LCM中,很好地实现了图形显示。表明该液晶显示控制器成功地替代了传统的ASIC液晶控制器,具有良好的应用前景。
关键字:液晶显示控制器 图形点阵 FPGA
引用地址:
基于FPGA的液晶显示控制器设计
推荐阅读最新更新时间:2024-05-02 22:41
基于FPGA的图像传感器驱动设计
汽车在给人们生活带来便利的同时也带来了交通事故。其中超速行驶是造成交通事故的重要隐患之一。据研究表明,目前针对车辆超速行驶情况的道路抓拍系统中所使用的图像传感器大多为小面阵器件,普遍为100万~200万像素,从而导致抓拍图像的像素比较低、能够同时抓拍的车道数较少等等问题。面对这一系列问题,大面阵的图像传感器便逐渐成了人们关注的热点。在设计过程中,分析了具有500万像素的CMOS图像传感器MT9P401的工作模式,选用QuartusⅡ做为开发工具,使用Verilog HDL语言对驱动电路设计方案进行了硬件描述,并对所设计的驱动时序进行仿真和验证。 1 MT9P401图像传感器介绍 1.1 主要特点 MT9P401是Micron
[模拟电子]
基于FPGA+DSP的多通道单端/差分信号采集系统设计
在信号处理过程中,经常采用 DSP + FPGA 协同处理的方法。是因为DSP虽然可以实现较高速率的信号采集,但其指令更适于实现算法而不是逻辑控制,其外部接口的通用性较差。而FPGA时钟频率高、内部延时小,全部控制逻辑由硬件完成,速度快、效率高,适合于大数据量的传输控制,可以集成外围控制、译码和接口电路,在高速数据采集方面有着DSP以及单片机无法比拟的优势,但缺点是难以实现一些复杂的算法。因此,若采用DSP+FPGA协同处理的方法,便可以使DSP的高速处理能力与FPGA的高速、复杂的组合逻辑和时序逻辑控制能力相结合,达到互补,使系统发挥最佳性能。 在目前的信号采集及测试系统中,由于应用背景的复杂,经常需要对多路信号进行采集,有的甚
[嵌入式]
Microsemi:FPGA的安全可靠性到底能到什么程度?
近日,Microsemi推出了新的 SmartFusion 2 系列SoC FPGA,如果说赛灵思和Altera的FPGA产品在工艺和性价比方面取得了创造性胜利的话,那么,Microsemi的这款基于ARM Cortex-M3的SmartFusion 2系列FPGA则更好地诠释了安全可靠性能。 Microsemi的产品主打工业、国防、航空、通讯和医疗等领域,主要包括高性能高可靠性模拟与射频器件、混合信号与射频集成电路、SoC解决方案等,其FPGA产品也不例外,自1985年出产了业界第一颗基于反熔丝技术的器件开始,Microsemi先后推出了第一代的ACT产品系列和基于快闪的ProASIC产品 ,延伸了反熔丝原有的可靠性,
[嵌入式]
低功率技术-“鸡”还是“蛋”?
对于目前以及可预见的将来,便携式设计工程师正面临着一个令人畏缩的挑战-全球消费者对尺寸更小、价格更便宜、功能丰富、电池使用寿命更长的便携式设备的无止境的需求。因而就像真实电视秀一样,同样产品的设计反复绝对数量将呈指数级增长。 与此同时,系统设计工程师不得不跟上不断变化的音视频处理标准以及越来越多地使用安全压缩和加密技术的趋势。此外,由于产品生命周期短并且这个市场中激烈的竞争,设计工程师需要不断增加功能,提高复杂性,但是不能以电池寿命为代价。越来越大的节能压力、必须不得不以并行方式运营设计团队带来的成本、创建更加复杂的芯片以及越来越昂贵的掩模组正在降低便携式系统的投资回报(ROI),同时产生了对满足这些要求的创新和技术的需求。
[焦点新闻]
莱迪思推出专为汽车应用优化的CertusPro-NX FPGA,强化其产品组合
提供符合AEC-Q100标准的高级系统带宽和存储器功能,以同类产品中最小的器件尺寸提供领先的低功耗和高性能 中国上海——2022年8月25日—— 莱迪思半导体公司,低功耗可编程器件的领先供应商,近日宣布优化CertusPro™-NX系列通用FPGA,从而支持汽车和温度范围更广的应用。 这些新器件拥有汽车级特性、AEC-Q100认证和CertusPro-NX FPGA系列产品领先的低功耗、高性能和小尺寸。而且,由于支持LPDDR4外部存储器,它们能够为信息娱乐系统的显示处理和桥接、车载网络以及高级驾驶员辅助系统(ADAS)中的摄像头处理/传感器桥接等应用提供了长期稳定的支持。 莱迪思半导体产品营销总监Jay Aggarwal
[嵌入式]
基于高速FPGA的PCB设计技术的研究
如果高速PCB设计能够像连接原理图节点那样简单,以及像在计算机显示器上所看到的那样优美的话,那将是一件多么美好的事情。然而,除非设计师初入PCB设计,或者是极度的幸运,实际的PCB设计通常不像他们所从事的电路设计那样轻松。在设计最终能够正常工作、有人对性能作出肯定之前,PCB设计师都面临着许多新的挑战。这正是目前高速PCB设计的现状--设计规则和设计指南不断发展,如果幸运的话,它们会形成一个成功的解决方案。
绝大多数PCB是精通PCB器件的工作原理和相互影响以及构成电路板输入和输出的各种数据传输标准的原理图设计师与可能知道一点甚至可能一点也不知道将小小的原理图连线转换成印刷电路铜线后将会发生什么的专业
[嵌入式]
Altera 与西藏大学在今年九月共同成立 FPGA 实验室
Altera公司 (NASDAQ: ALTR) 今天宣布,Altera在今年九月成为首家外资公司与西藏大学共同成立一个 FPGA实验室。西藏大学位于西藏拉萨,有超过12,000名学生,是一所享有盛名的学府,并且是西藏地区唯一被国家列入211项目名单之内的高等学府。该项目是培养中国的高级别的精英大学,目的是配合经济和社会的发展策略。这足以证明西藏大学在科学,技术和人力资源方面,已达到相当水平,符合中国政府设定的标准。 该联合实验室是世界上海拔最高的FPGA实验室,备有33套Altera Cyclone® II FPGAs的DE2-70开发套件装备。这是Altera在中国的第84个联合实验室,并且是Altera 大学计划
[嵌入式]
采用MAX II器件实现FPGA设计安全解决方案
本文提供的解决方案可防止FPGA设计被拷贝,即使配置比特流被捕获,也可以保证FPGA设计的安全性。这种安全性是通过在握手令牌由MAX II器件传送给FPGA之前,禁止用户设计功能来实现的。 基于SRAM的FPGA是易失器件,需要外部存储器来存储上电时发送给它们的配置数据。在传送期间,配置比特流可能会被捕获,用于配置其他FPGA。这种知识产权盗窃损害了设计人员的利益。 本文提供的解决方案可防止FPGA设计被拷贝,即使配置比特流被捕获,也可以保证FPGA设计的安全性。通过在握手令牌由MAX II器件传送给FPGA之前,禁止用户设计功能来实现这种安全性。选用MAX II器件来产生握手令牌,这是因为该器件具有非易失性,关电
[工业控制]