根据市调机构In-Stat年初所公布的报告指出,USB 3.0的外围应用出货量在2011年大约为7000万部,到了2014年将蓬勃发展并飙破10亿部。同时他们也预估在2015年时,笔记本电脑将成为USB 3.0接口的最大载具,届时将约有50亿个外围应用可搭载不同形式的USB接口,包含电脑、手机、主机外壳、消费性电子以及影音多媒体等产品。换言之,随着消费性电子产品的功能特性不断升级,市场规模也随之起舞与扩张,越来越多应用都需要高带宽的传输速度来满足消费者的使用情境与体验,而USB 3.0即是目前所提出的最佳解决方案之一。除了数据传输速度比USB 2.0快上10倍外,更向下兼容目前已广泛被使用的传统USB产品,进阶后的电源管理系统不但能提高80%的供电率以提升充电效能外,更能以低功耗的状态执行作业以延长电池的使用时间。In-Stat更指出,Intel推出的Ivy Bridge处理器将首次内建并原生支持USB 3.0功能,再搭配Microsoft新一代操作系统Windows 8的推出,将成为普及USB 3.0的一大动力,也意味着USB 3.0未来全面渗透市场的无限可能。
不可否认地,USB技术已然成为链接个人电脑/手机与外部设备的规范标准。为了满足不断成长的数据带宽传输速度与需求,USB-IF在2008年正式公布了USB 3.0的技术规格,同时也带来新的设计/测试的挑战;在经过4年时间的市场探索与技术磨合,越来越多支持USB3.0产品上市,大家都期许能有更高速、更节能的USB产品。而为了达成这项技术规格的质量稳定与效能保障,从促进规范的标准化入手,建立一套完整的测试解决方案绝对是各家厂商在验证或推出USB 3.0应用产品的必经之路。因此,百佳泰特别针对在实际验证USB 3.0兼容性测试时,比较常遇到的问题跟分析做一些分享,希望可以提供厂商在开发产品时一个参考准则。
USB 3.0的兼容性测试主要分为两个类别,装置端(device)与主机端(host)。在装置端的部分,必须通过「互操作性测试」(xHCI Interoperability test)的检验,其主要是针对所有USB 3.0的产品架构所作的装置互操作性测试,让各种USB 3.0产品能与其他装置有效地互通并协同运作,不会因为软、硬件版本的不同而失效。在主机端部分,除了作互操作性测试外,还得进行另一项名为「向后兼容测试」(xHCI Backwards compatibility test)的验证,其测试标的除了整个USB产品架构外,xHCI controller还必须与现不同的USB产品(known good device)作测试,以确保不同的USB产品在这个主机端上能够正常的运作。我们可以发现,USB 3.0的推出除了代表速度与效能的技术提升外,为了确保与前代技术与装置的兼容性,类似的互操作性与向后兼容测试势必非常重要,才能让原本的USB技术维持零落差的技术条件与使用情境。与USB 2.0测试不同的是,某些测试上的问题肇因是单单发生在USB 3.0测试当中,这也意味着即使USB 2.0已高普及化,但在实际验证USB 3.0时还是会遇到许多新的难题,值得厂商与我们去一一克服和疑难解答。
问题分享一:最低SSC延展幅度不符合规范(±300 PPM)。
在Electrical Test的部分,由于USB 3.0的传输速率高于USB 2.0有十倍之多, EMI(Electromagnetic interference)的影响也相对严重;因此,在USB 3.0的规范中加入了SSC(Space Spectrum Clock)技术规范,其目的即是透过SSC来降低EMI所带来的效应,以确保USB 3.0的讯号质量不会受到影响。在USB 2.0时期,由于属较低的传输速率,受到EMI的干扰也较轻,因而未将SSC技术纳入规范;然而,随着USB 3.0的高速传输能力上升,间接地越容易受到EMI的干扰。因此,在USB 3.0的测试规范中,也特别去测试其SSC此技术来验证电子讯号的质量。
根据SSC技术规范的标准指出,其量测出的triangle讯号图,其上下展幅为: ±300 ppm(Min);-3700 ~ -5300 ppm(Max)。我们可以从图一的案例发现,其最低的展幅为333 ppm,并不在正常规范内。紧接着,我们着手进行疑难解答的动作,发现在这个情境中的问题肇因即为不正确的负载电容振荡电路的输出频率偏移,进而造成SSC展幅偏移。因此,透过改变负载电容来调整输出频率,从16pF调成20pF(表一),其最低的展频幅度为204 ppm(图二),已符合SSC技术规范要求。换言之,其问题肇因即是晶体振荡电路的电容负载值。
在验证USB 3.0的过程中,另一项重要的测试LFPS(Low Frequency Periodic Signaling)信号,目的为验证LFPS在经过一定的传输信号长度后,其衰减值是否仍在规范之内,以确保USB 3.0的传输速度与质量。
首先,根据USB 3.0的规范指出,其LFPS差分讯号的正常范围应属800 mV至1200mV之间。在测试我们选用的USB3.0产品时发现,其差分讯号测得604.4mV,并不符合协会规范。因此,我们从讯号的衰减因素着手进行解决方案,发现原因是由讯号复元组件也就是Repeater(Redriver)所造成,现今许多装置为了方便消费者使用,外嵌许多USB接口,但不是每个接口都直接建置在主机版上,为了让更多的USB接口可以延伸到各个位置,需要透过额外加的Cable来延长,这时讯号的传递就可能受到Chip与接口传输距离过长造成讯号质量严重衰减。此时透过Repeater可让原始讯号在经过延长后的传输距离后作一个重整与还原的动作,使讯号维持一定的强度。但Repeater的参数(EX: Gain)若调整不正确,将会造成错误的行为及振幅,而在我们重新更换过Repeater之后,立即发现如图四的结果,其差分讯号下降至1080.4mV并符合协会规范。
这项问题肇因即可说明,如果USB 3.0主机芯片和连接器之间的距离太长,就会出现讯号幅度明显衰减的状况。若为了改善此情况而加入Repeater,其参数必须调整至一个最适当的值。Repeater所重整还原出来的讯号不一定符合系统或规范要求,有时候讯号经过Repeater的重整还原之后,虽然讯号强度得到了补偿;但因参数调整不正确,使其讯号振幅过大超出规范,所以Repeater的使用需要经过精密的设定与验证,才能得到最正线的传输讯号的稳定质量。
问题分享三:从hybrid sleep恢复后,系统会发生重置动作或USB装置无法续传。
不同于前两项属于electrical或硬件端的问题,我们观察到也有因为软件设定而导致测试失败。这次我们用USB协会定义使用的三项USB产品(known good device)来作主机软件端的兼容性测试时发现,其中一项产品在从睡眠模式(hybrid sleep)中恢复后,会产生系统reset或USB传输中断的状况。根据协会规范,当USB正在传输档案时,即使进入睡眠模式后再重新启动,应要做续传的动作,如果发生停止或reset的状况即为测试失败。
因此,我们从这个问题肇因可以发现USB传输效能与系统供电的关联性。其他两项USB产品皆是属于Self -Power的产品,因此在系统进入hybrid sleep后在重新复苏启动OS时,由于产品自我供电的特性,使产品不会因为所连接的Host中断V_BUS供电而在回到操作系统时做reset的动作,使原本的传输中断。反之,在这个测试出现失败的产品中,因为是属Bus-Power产品,其供电接来自于所连接的Host,因此从hybrid sleep苏醒时,其产品会因Host供应的V_BUS不足(或中断)导致来不及在回到操作系统前完成resume的动作,造成reset或中断传输的动作。基本上,我们推测其为产品BIOS的问题,因此在我们更换过产品的BIOS后,即可解决此供电状况的问题(如图五和图六)。特别的是,我们发现现今许多USB产品为了主打省电的功能,各家的BIOS都不尽相同;但为符合协会规范,其最低要求是系统从hybrid sleep的状态恢复时,至少要能来得及反应并启动OS,才不会造成其他装置动作出现中断或系统发生reset的情况。 [page]
问题分析四:USB 3.0兼容性测试时最常遇到的问题之一,韧体不兼容造成蓝屏(BOSD,Blue Screen of Death)状况。
在了解整个问题肇因前,我们得先知道在作USB 3.0测试时,必须手动开启「Driver Verifier」此指令,目的为让这个指令去监视所有gold tree上装置的运作状态,这也是协会规范所指定的动作之一。再者,我们在作USB 3.0兼容性测试时,只要出现蓝屏(BSOD)便会判定为测试失败。根据上述,这个阶段的问题肇因即是发生在当待测物装置在某厂商芯片组的USB 3.0笔记本电脑上时,接着我们再作整个gold tree的兼容性测试时,会不定时的发生蓝屏状况。为了解决此问题,我们发现在开启Driver Verifier后会有一个预设旗标值(flags),其默认值为「0x7F」,这会让USB装置上的driver与系统controller driver产生冲突情形,因此造成蓝屏的现象。而根据与USB协会及AMD讨论出来的解决方式,即是把旗标职从「0x7F」改成「0x9ab」,蓝屏问题集获得改善。
一般来说,获得越多环境资源的driver理当能正常运作,因此建构这个最低需求环境的Driver Verifier指令,为的就是让gold tree上所有的device 及controller driver最严苛的环境之下,还能够正常的运作。相反地,如果driver在这个环境条件下测试会造成蓝屏,就代表这个装置不符合规范;能通过这个最低资源、环境条件的测试,才能确保各产品兼容的完整性。
问题分享五:选配的电缆质量也很重要,会间接影响USB影、音输出质量。
我们在作USB 3.0向后兼容测试(backwards test)时,必须全面检测gold tree上的所有装置的兼容性,例如耳机、鼠标、网络摄影机或打印机等等。在测试时,我们一样透过Driver Verifier的动作来让系统运作条件与链接环境保持在最低限度,并藉此观察gold tree上所有装置的运作情况。在此发现几项audio与video质量问题,例如耳机发生明显的音频噪音、网络摄影机发生明显的影像延迟或视频噪声。而这些装置在软、硬件测试方面皆没有发生问题,却在作全面兼容性时发生问题,因此我们把目光聚焦在cable上。也就是说,不论是测试和一般用途的USB 3.0 cable,质量的良劣是非常重要的,如果选配低质量的USB 3.0 cable,会导致错误率提高,造成数据传输性能下降、传输的时间不稳定等等状况。因此,cable的质量会影响影音传输,不同厂商的cable也会有不同的结果,如果cable的带宽被耗尽,就会有噪音出现进而影响质量。
综合上述,我们这次的目标虽然是在探讨USB 3.0验证的其中几个关键议题,但我们也可从中发现,USB 3.0与USB 2.0除了在传输速度有所不同外,在许多的技术深度上也比USB2.0更进阶。也就是说,相关USB厂商在开发USB 3.0装置时,不能仅秉持过往USB 2.0的技术思维,必须透过更深入的研究、技术资源与精力投入,才能找出关键的技术升级模式和相关问题解决方案,才能让市面上所有的USB产品达到兼容性的理想目标。市面上USB产品与应用越来越普及,百佳泰除了有一系列的USB测试方案外,也针对这些验证过程中发现的问题肇因作出规划性的报告,提供相关厂商问题侦错与肇因的协寻与技术支持。本文章就是谨以专业实验室角度,勾勒出几项我们发现的重点项目与大家分享,让大家一起为提升USB 3.0效能表现有个沟通合作的平台,提供USB厂商在研发设计产品时,一个质量保障的参考与技术咨询。如有任何关于USB 3.0认证、测试或技术支持等疑问,欢迎径洽百佳泰。
关键字:USB 3.0 实测评鉴 传输速度
引用地址:USB 3.0实测评鉴与报告:快速领略问题症结与解决方案
不可否认地,USB技术已然成为链接个人电脑/手机与外部设备的规范标准。为了满足不断成长的数据带宽传输速度与需求,USB-IF在2008年正式公布了USB 3.0的技术规格,同时也带来新的设计/测试的挑战;在经过4年时间的市场探索与技术磨合,越来越多支持USB3.0产品上市,大家都期许能有更高速、更节能的USB产品。而为了达成这项技术规格的质量稳定与效能保障,从促进规范的标准化入手,建立一套完整的测试解决方案绝对是各家厂商在验证或推出USB 3.0应用产品的必经之路。因此,百佳泰特别针对在实际验证USB 3.0兼容性测试时,比较常遇到的问题跟分析做一些分享,希望可以提供厂商在开发产品时一个参考准则。
USB 3.0的兼容性测试主要分为两个类别,装置端(device)与主机端(host)。在装置端的部分,必须通过「互操作性测试」(xHCI Interoperability test)的检验,其主要是针对所有USB 3.0的产品架构所作的装置互操作性测试,让各种USB 3.0产品能与其他装置有效地互通并协同运作,不会因为软、硬件版本的不同而失效。在主机端部分,除了作互操作性测试外,还得进行另一项名为「向后兼容测试」(xHCI Backwards compatibility test)的验证,其测试标的除了整个USB产品架构外,xHCI controller还必须与现不同的USB产品(known good device)作测试,以确保不同的USB产品在这个主机端上能够正常的运作。我们可以发现,USB 3.0的推出除了代表速度与效能的技术提升外,为了确保与前代技术与装置的兼容性,类似的互操作性与向后兼容测试势必非常重要,才能让原本的USB技术维持零落差的技术条件与使用情境。与USB 2.0测试不同的是,某些测试上的问题肇因是单单发生在USB 3.0测试当中,这也意味着即使USB 2.0已高普及化,但在实际验证USB 3.0时还是会遇到许多新的难题,值得厂商与我们去一一克服和疑难解答。
问题分享一:最低SSC延展幅度不符合规范(±300 PPM)。
在Electrical Test的部分,由于USB 3.0的传输速率高于USB 2.0有十倍之多, EMI(Electromagnetic interference)的影响也相对严重;因此,在USB 3.0的规范中加入了SSC(Space Spectrum Clock)技术规范,其目的即是透过SSC来降低EMI所带来的效应,以确保USB 3.0的讯号质量不会受到影响。在USB 2.0时期,由于属较低的传输速率,受到EMI的干扰也较轻,因而未将SSC技术纳入规范;然而,随着USB 3.0的高速传输能力上升,间接地越容易受到EMI的干扰。因此,在USB 3.0的测试规范中,也特别去测试其SSC此技术来验证电子讯号的质量。
根据SSC技术规范的标准指出,其量测出的triangle讯号图,其上下展幅为: ±300 ppm(Min);-3700 ~ -5300 ppm(Max)。我们可以从图一的案例发现,其最低的展幅为333 ppm,并不在正常规范内。紧接着,我们着手进行疑难解答的动作,发现在这个情境中的问题肇因即为不正确的负载电容振荡电路的输出频率偏移,进而造成SSC展幅偏移。因此,透过改变负载电容来调整输出频率,从16pF调成20pF(表一),其最低的展频幅度为204 ppm(图二),已符合SSC技术规范要求。换言之,其问题肇因即是晶体振荡电路的电容负载值。
[page]
问题分享二:LFPS低频周期信号的振幅不符合规范(800 mV<= X <=1.200mV)。在验证USB 3.0的过程中,另一项重要的测试LFPS(Low Frequency Periodic Signaling)信号,目的为验证LFPS在经过一定的传输信号长度后,其衰减值是否仍在规范之内,以确保USB 3.0的传输速度与质量。
首先,根据USB 3.0的规范指出,其LFPS差分讯号的正常范围应属800 mV至1200mV之间。在测试我们选用的USB3.0产品时发现,其差分讯号测得604.4mV,并不符合协会规范。因此,我们从讯号的衰减因素着手进行解决方案,发现原因是由讯号复元组件也就是Repeater(Redriver)所造成,现今许多装置为了方便消费者使用,外嵌许多USB接口,但不是每个接口都直接建置在主机版上,为了让更多的USB接口可以延伸到各个位置,需要透过额外加的Cable来延长,这时讯号的传递就可能受到Chip与接口传输距离过长造成讯号质量严重衰减。此时透过Repeater可让原始讯号在经过延长后的传输距离后作一个重整与还原的动作,使讯号维持一定的强度。但Repeater的参数(EX: Gain)若调整不正确,将会造成错误的行为及振幅,而在我们重新更换过Repeater之后,立即发现如图四的结果,其差分讯号下降至1080.4mV并符合协会规范。
这项问题肇因即可说明,如果USB 3.0主机芯片和连接器之间的距离太长,就会出现讯号幅度明显衰减的状况。若为了改善此情况而加入Repeater,其参数必须调整至一个最适当的值。Repeater所重整还原出来的讯号不一定符合系统或规范要求,有时候讯号经过Repeater的重整还原之后,虽然讯号强度得到了补偿;但因参数调整不正确,使其讯号振幅过大超出规范,所以Repeater的使用需要经过精密的设定与验证,才能得到最正线的传输讯号的稳定质量。
问题分享三:从hybrid sleep恢复后,系统会发生重置动作或USB装置无法续传。
不同于前两项属于electrical或硬件端的问题,我们观察到也有因为软件设定而导致测试失败。这次我们用USB协会定义使用的三项USB产品(known good device)来作主机软件端的兼容性测试时发现,其中一项产品在从睡眠模式(hybrid sleep)中恢复后,会产生系统reset或USB传输中断的状况。根据协会规范,当USB正在传输档案时,即使进入睡眠模式后再重新启动,应要做续传的动作,如果发生停止或reset的状况即为测试失败。
因此,我们从这个问题肇因可以发现USB传输效能与系统供电的关联性。其他两项USB产品皆是属于Self -Power的产品,因此在系统进入hybrid sleep后在重新复苏启动OS时,由于产品自我供电的特性,使产品不会因为所连接的Host中断V_BUS供电而在回到操作系统时做reset的动作,使原本的传输中断。反之,在这个测试出现失败的产品中,因为是属Bus-Power产品,其供电接来自于所连接的Host,因此从hybrid sleep苏醒时,其产品会因Host供应的V_BUS不足(或中断)导致来不及在回到操作系统前完成resume的动作,造成reset或中断传输的动作。基本上,我们推测其为产品BIOS的问题,因此在我们更换过产品的BIOS后,即可解决此供电状况的问题(如图五和图六)。特别的是,我们发现现今许多USB产品为了主打省电的功能,各家的BIOS都不尽相同;但为符合协会规范,其最低要求是系统从hybrid sleep的状态恢复时,至少要能来得及反应并启动OS,才不会造成其他装置动作出现中断或系统发生reset的情况。 [page]
问题分析四:USB 3.0兼容性测试时最常遇到的问题之一,韧体不兼容造成蓝屏(BOSD,Blue Screen of Death)状况。
在了解整个问题肇因前,我们得先知道在作USB 3.0测试时,必须手动开启「Driver Verifier」此指令,目的为让这个指令去监视所有gold tree上装置的运作状态,这也是协会规范所指定的动作之一。再者,我们在作USB 3.0兼容性测试时,只要出现蓝屏(BSOD)便会判定为测试失败。根据上述,这个阶段的问题肇因即是发生在当待测物装置在某厂商芯片组的USB 3.0笔记本电脑上时,接着我们再作整个gold tree的兼容性测试时,会不定时的发生蓝屏状况。为了解决此问题,我们发现在开启Driver Verifier后会有一个预设旗标值(flags),其默认值为「0x7F」,这会让USB装置上的driver与系统controller driver产生冲突情形,因此造成蓝屏的现象。而根据与USB协会及AMD讨论出来的解决方式,即是把旗标职从「0x7F」改成「0x9ab」,蓝屏问题集获得改善。
一般来说,获得越多环境资源的driver理当能正常运作,因此建构这个最低需求环境的Driver Verifier指令,为的就是让gold tree上所有的device 及controller driver最严苛的环境之下,还能够正常的运作。相反地,如果driver在这个环境条件下测试会造成蓝屏,就代表这个装置不符合规范;能通过这个最低资源、环境条件的测试,才能确保各产品兼容的完整性。
问题分享五:选配的电缆质量也很重要,会间接影响USB影、音输出质量。
我们在作USB 3.0向后兼容测试(backwards test)时,必须全面检测gold tree上的所有装置的兼容性,例如耳机、鼠标、网络摄影机或打印机等等。在测试时,我们一样透过Driver Verifier的动作来让系统运作条件与链接环境保持在最低限度,并藉此观察gold tree上所有装置的运作情况。在此发现几项audio与video质量问题,例如耳机发生明显的音频噪音、网络摄影机发生明显的影像延迟或视频噪声。而这些装置在软、硬件测试方面皆没有发生问题,却在作全面兼容性时发生问题,因此我们把目光聚焦在cable上。也就是说,不论是测试和一般用途的USB 3.0 cable,质量的良劣是非常重要的,如果选配低质量的USB 3.0 cable,会导致错误率提高,造成数据传输性能下降、传输的时间不稳定等等状况。因此,cable的质量会影响影音传输,不同厂商的cable也会有不同的结果,如果cable的带宽被耗尽,就会有噪音出现进而影响质量。
综合上述,我们这次的目标虽然是在探讨USB 3.0验证的其中几个关键议题,但我们也可从中发现,USB 3.0与USB 2.0除了在传输速度有所不同外,在许多的技术深度上也比USB2.0更进阶。也就是说,相关USB厂商在开发USB 3.0装置时,不能仅秉持过往USB 2.0的技术思维,必须透过更深入的研究、技术资源与精力投入,才能找出关键的技术升级模式和相关问题解决方案,才能让市面上所有的USB产品达到兼容性的理想目标。市面上USB产品与应用越来越普及,百佳泰除了有一系列的USB测试方案外,也针对这些验证过程中发现的问题肇因作出规划性的报告,提供相关厂商问题侦错与肇因的协寻与技术支持。本文章就是谨以专业实验室角度,勾勒出几项我们发现的重点项目与大家分享,让大家一起为提升USB 3.0效能表现有个沟通合作的平台,提供USB厂商在研发设计产品时,一个质量保障的参考与技术咨询。如有任何关于USB 3.0认证、测试或技术支持等疑问,欢迎径洽百佳泰。
上一篇:USB工业相机在机器视觉领域的应用优势
下一篇:利用充电检测器构建通用USB充电器
推荐阅读最新更新时间:2024-05-02 22:42
意法推出新款稳健可靠USB Type-C控制器
意法半导体(ST)推出两款全新USB Type-C标准认证埠控制器芯片。新产品内建保护电路,有助于设计人员实现高成本效益的接口,以进一步支持USB功能整合需求,其中包括电源协议的沟通(Power Negotiation)、外接式线缆的管理(Managed Active Cables)和外接设备的支持(Guest Protocols)。 USB Type-C标准规定线缆可正反插接,让各种设备互联变得更简单。 Type-C接口亦支持USB之所有功能,包括480Mbit/s USB 2.0和10Gbit/s USB 3.1数据传输,5V/0.5A、最高20V/5.0A供电,延长连接距离的Managed Active Cables外接式线
[半导体设计/制造]
区块链3.0时代,让个人电脑闲置算力自动去“挖矿”
对于所有人来说,一说到钱似乎就两眼放光,这两年 区块链 简直就是钱的代名词,虽然可以应用于多个领域,但是在数字加密货币领域更为火爆。比特币的大涨也引发了多种其它数字加密货币的发行,而且屡屡遭到哄抢。这样的盛况引起了挖矿热,一大批虚拟世界的矿工产生了,为了挖矿他们不惜去偏远地区,不惜花大价钱购买高性能挖矿机,算力无形中成为一种隐形的财富。 除了专业的挖矿机,还有哪些电脑可以派上用场?其实我们每个人都有电脑,据统计,全球的电脑年出货量是2亿台,以每五年为一个更换周期来计算,全球大概有10亿台电脑随时保持运行的状态,但是它们的利用率只有20%,剩余的80%时间都在闲置状态,如果让它们成为云计算节点,在闲暇之余也能成为挖矿机,主人也可
[嵌入式]
英飞凌与Framework携手推出具有先进USB-C连接功能的可轻松升级、定制和维修的笔记本电脑
【2024年2月2日,德国慕尼黑和美国加利福尼亚州旧金山讯】 电子垃圾和很容易被淘汰的笔记本电脑一体机等问题逐渐引起了许多消费者的关注和担忧,这些消费者希望有更加绿色环保的科技产品供其选择。 为此,Framework Computer与英飞凌科技股份公司(FSE代码:IFX / OTCQX代码:IFNNY)合作,在近期联合推出了最新产品Framework Laptop 16。这款笔记本电脑是首款支持180 W和240 W USB-C充电的消费电子产品,该功能的实现主要归功于Framework Laptop 16使用了支持扩展功率范围(EPR)的、高度集成的双/单端口USB-C PD控制器——EZ-PD™ CCG8。 EZ-
[家用电子]
500万次弯折,这款USB线缆不简单
随着应用环境要求的不断提升,对于线缆本身有着更多的期待。本期L-com诺通将围绕一种特别强悍的线缆——拖链线缆,进行详细介绍。其中的拖链级USB线缆具备十分明显的优势,能在日趋复杂的环境中找到属于自己的一席之地。 跟随L-com诺通先总的来看看,拖链级的USB线缆有哪些亮点优势,可以在更为严苛的连接环境中带来畅快的使用体验。 总结完亮点优势后,跟随L-com诺通一起来详细看看拖链级的USB线缆,为何让USB连接有了新的方向。 无论是现在主打的C型接口,A型、B型以及Micro USB都有覆盖,可以实现大部分USB接口的连接。 除了公头外,还有母头,以及带机器视觉翼形螺丝的接口。高柔性拖链级USB线缆中同
[工业控制]
安森美半导体推出新的多媒体模拟音频开关和高精度电流检测放大器用于 USB-C 应用
新器件适用于平板电脑、智能手机、笔记本电脑和其他 USB-C 及电源应用 2018年7月24日 — 推动高能效创新的安森美半导体 (ON Semiconductor,美国纳斯达克上市代号:ON) 推出了两款新产品,可一起用于 USB-C (Type-C) 应用,也为其他现代电源应用中提供优势。新的器件是集成保护功能的 USB Type-C 模拟音频开关 FSA4480,以及电流检测放大器 NCS21x 系列。 FSA4480 是高性能的 USB Type-C 端口多媒体开关,支持模拟音频耳机,允许通用 USB Type-C 端口传输 USB2.0 信号、模拟音频和模拟麦克风信号。该器件支持音频检测路径,是全集
[电源管理]
FTDI FPGA平台支持高速USB芯片和软件
USB 芯片和软件厂商飞特蒂亚(FTDI)公司发布一款灵活而强大的开发平台 Morph-IC-II ,可加速基于FPGA的应用与制作,并简化先进逻辑电路设计中整合高速480Mbit/s USB通讯作业。 Morph-IC-II 平台整合了 Altera Cyclone - II FPGA与高性能 USB 2.0 功能,因而可简化高速通讯以及实现低于100ms的快速 FPGA 编程/再编程。这使得Morph-IC-II成为必须透过 USB 下载新软件以重新动态配置硬件功能的理想应用选择。此外,除了提高应用的灵活性,透过USB重新配置硬件也可降低BOM成本, FPGA 只需为最复杂的分离功能而不是所有功能来设定大小。
[嵌入式]
STM32F429的USB有坑?
最近某项目需要用到USB与CAN: 拿到这样的需求,我们当然是先得保证通讯正常。于是我找了一个USB例程与一个CAN例程,分别调试验证。 经过几番折腾已经保证了USB与上位机能正常通讯了,也能保证了CAN的正常收发(拿了两块开发板做验证)。 两头都没有问题了,再加上一些数据处理就差不多完成了。USB与CAN我都是第一次用,没想到那么顺利,美滋滋,正准备放松的时候,问题就来了。这是一个整体的东西,最终都要把这两部分集合起来吧。 我把CAN工程里关于CAN的部分移到USB工程里,这时候CAN竟然用不了了。这时候我就开始在怀疑自己是不是手贱误删了哪里了,于是重新来一遍,发现还是不行。 查了代码很久也没找出什么错误了,
[单片机]
迄今最高速光纤数据传输达301TB/秒,为英国平均宽带速度450万倍
据物理学家组织网26日报道,来自英国阿斯顿大学、日本国家信息通信技术研究所(NICT)和美国诺基亚贝尔实验室的科学家,利用光纤系统中尚未被使用的新波段,让数据在一根光纤中以每秒301太比特(TB)的速度传输,这是迄今已知最高数据传输速度。相关论文已经提交于格拉斯哥举行的欧洲光通信会议(ECOC)。 菲利普斯博士与波长管理设备。 图片来源:阿斯顿大学 研究团队通过新开发的光放大器和光增益均衡器,利用光纤系统内尚未被使用的新波段实现了上述速度。2023年9月,英国通信管理局发布的英国家庭宽带性能报告指出,该国平均宽带速度为每秒69.4兆比特(MB),而最新数据传输速度高达其450万倍。 研究人员表示,从广义上讲,数据是通过光纤发
[网络通信]