基于LabVIEW的倒车自动刹车系统开发

发布者:丝语轻风最新更新时间:2013-09-10 来源: 21ic关键字:LabVIEW  低速控制  刹车控制 手机看文章 扫描二维码
随时随地手机看文章

应用领域:控制与仿真、汽车主动安全、低速控制、刹车控制

挑战:低速控制的速度控制范围小并且精度要求高。由于车身零部件属非线性时变系统,产生的累计误差对控制系统造成极大影响。因此需要对相关数据进行实时分析并要求系统作出快速响应,从而使车辆能以极低的速度平稳倒车。

应用方案:通过DAQ设备驱动超声波探头,并分析超声波的飞渡时间从而检测车辆与障碍物的实时距离。通过NI-USB8473与车载CAN网络实时通信,对车辆状态进行实时监测,并对获取的实时速度、实时障碍物距离和实时制动力等信息进行分类。Fuzzy-PI算法对信息进行分析处理,从而控制车辆相关设备快速响应。以此实现车辆低速平稳倒车,并在距离障碍物的安全范围内自动刹车确保车辆和驾驶员的安全。该方案已在长安志翔CV8上成功实现倒车自动刹车辅助系统相关功能,并对正在进行的全自动泊车项目的速度控制奠定夯实基础。

使用的产品:

LabVIEW 2010软件开发平台

NI DAQ平台

LabVIEW CAN模块

NI 8473

NI 9269

NI 9221

cDAQ-9178

正文:

一. 引言

随着工业化进程的不断加速,汽车已成为新时代的代名词。目前各国汽车的保有量均不断上升,同时由于汽车所导致的交通事故也呈现逐年上升趋势。据统计,在中国每三分钟发生一起交通事故,每五分钟有一人因交通事故而死亡。所以消费者在选择汽车作为代步工具时除了考虑外观和表面,亦对车身的安全性能给予更多的关注。自19世纪九十年代以来,驾驶员辅助安全系统得到迅猛发展。目前已开发出并安装于的辅助安全系统有电子辅助制动系统(EBA)、自适应巡航系统(ACC)、电子稳定性控制系统(ESC)、主动避撞系统(ABC)和自动泊车系统(ASC)等。上述辅助安全系统的主要功能大体可以概括成当系统检测到驾驶员或车辆处于危险情况时,系统提示驾驶员相关操作信息或直接制动车辆以防止碰撞的发生。

从技术层面看,多数交通事故发生关键问题即驾驶员无法准确控制车速和车—障碍物的距离,此问题在倒车过程中表现得尤为突出。例如,在倒车过程中驾驶员对车后存在视野死角和视线模糊的问题,使得驾驶员无法正确判断车辆与车后障碍物的实时距离,因此造成误操作从而导致各种擦碰事故频发,此类事故的频发降低了驾驶的安全性。

二. 倒车自动刹车系统的系统背景与设计原则

市场上的倒车刹车系统大体可分为两类:倒车雷达系统和倒车影像系统。倒车雷达系统利用超声波测距原理,在智能控制器的控制下,由装置于车尾的探头发送超声波信号,并接收经障碍物发射的回波信号,继而控制器进行数据处理从而计算出车—障碍物的实际距离。而倒车影像系统则是通过安装在车后的远红外线广角摄像装置,将车后的障碍物实时显示在车内显示屏上,使得车后的状况更加直观可视。目前的倒车刹车系统的本质是在倒车过程中系统将所探测的车后环境反馈给驾驶员并给予一定操作提示,而不直接介入车辆动力系统控制。当出现紧急情况或者驾驶员误操作时,依然无法避免碰撞的发生。因此为了提高驾驶员及车辆的安全性,新一代的倒车刹车系统的开发迫在眉睫。

新一代的倒车刹车系统的关键问题即如何更好的控制车速和车—障碍物的距离。Kyongsu Yi提出适用于Stop-and-Go(S&G)控制系统的车—车距离控制算法,此算法包含了距离控制及利用节气门及刹车控制以达到加速度轨迹追踪的目的。其控制器采用LQ最佳控制法则,在控制效果上,此算法提供了一个良好的距离控制性能,并且有效的克服建构模型的误差问题。但其无法控制车速维持在低速范围。Venhovens在此基础上改善了速度控制策略,从而提升S&G控制系统在低速范围的准确性。但其依然无法解决车辆匀速行进,由此产生的耸车降低了驾驶员的舒适性。所以车辆的低速控制,尤其在倒车过程中的低速控制,依然有待发展,同时也是新一代倒车刹车系统的核心所在。

由于低速控制的速度控制范围小、精度要求高以及实时性强。同时由于车身零部件属非线性时变系统,因此产生的累计误差对控制系统会造成极大影响。故系统在对车身状态进行实时监控分析的同时必须要求相应系统对控制指令作出快速相应。本文开发的新一代倒车刹车系统—基于LabVIEW的倒车自动刹车系统着重于改善车辆在倒车过程中以低速平稳倒车,以确保驾驶员的行车舒适度。同时,当检测到车—障碍物距离处于危险范围时,系统自动使车制动从而保证驾驶员及车辆的安全性。

倒车自动刹车系统的控制指标如下:

1)车速方面:①预定车速②实时车速③实时加速度④期望压力值⑤实际压力值

2)距离方面:①车—障碍物实时距离②预定警戒距离

三. 倒车自动刹车系统的总体设计

3.1 系统模块图

图1 系统模块图

系统总共包括四个模块,分别是数据处理中心(DPC)、探测模块、刹车控制模块以及显示模块。DPC主要负责收集汇总实时数据并根据相关控制算法对其余各模块发出相应控制指令。探测模块通过NI设备驱动超声波传感器并将相关数据发送至DPC。刹车控制模块通过NI-8473与车载CAN通信无缝连接,返回车身实时状态信息至DPC并将DPC处理后的控制指令发送至车载相关设备,以此实现车载设备与LabVIEW平台的信息交互。显示模块基于LabVIEW平台显示车身实时数据以及测距模块的车—障碍物的距离,并可修改刹车控制算法中特征变量的参数大小。

3.2 探测模块设计

3.2.1 工作原理

大部分刹车系统传感器的探测范围在30cm至200cm之间,本系统选取性价比较高的超声波传感器测量距离。其探测范围为30cm至250cm之间,盲区为30cm。超声波传感器的工作原理及脉冲时序如图2、3。

 

图2 传感器工作原理图[page]

 图3 脉冲时序图

传感器的引脚定义如表1所示:

通过Time-of-Flight(TOF)算法计算发射波与接收波的时间差,从而得出超声波探头与障碍物间的距离,其距离计算公式如(1)式所示:

D=(c*t)/2           (1)

式中D为超声波传感器与障碍物的距离,c为声波在空气中的速度,t为发射波与接受波的时间差。

3.2.2 方案设计及指标设定

由图3可知超声波传感器的激励波脉冲时序在发射周期初始阶段连续发射14个40kHz的脉冲串后持续低电平至周期结束,属于非常规信号源,对外围硬件电路设计造成极大困难。针对此问题,LabVIEW DAQ平台的相关设备则降低了采集系统构筑的难度。

图4 停车标识符范围

▲ 采用的NI cDAQ-9178为8槽USB机箱,具有50多个结合集成信号调理的可热插拔I/O模块,机箱中内置4个通用32位计数器/定时器,并可借助使用DAQ Assistant的NI-DAQmx软件自动代码生成

▲ NI 9269采用单通道输出14个12V、40kHz的模拟电压信号后持续低电平,信号周期30ms

▲ NI 9221采用单通道模拟输入模块,采样频率1kHz,采样点数1k

本系统属低速控制范围(即车速低于5Km/h),为保证驾驶员的安全性同时避免车辆碰撞障碍物,依据运动学公式V02=2aS设定预定警戒距离为70cm。并在开发程序过程中设定70cm为停车标识符(StopFlag),如图4。

3.3 刹车控制模块

3.3.1 车辆模型

车辆数学模型的建立有利于验证系统的可行性,北科大的陈柏全教授在Matlab/Simulink平台上构建如图5所示的车辆纵向模型。

图5 车辆纵向模型

为了减小车身零部件对系统的非线性因素导致的累积误差影响,本系统仅通过试验车的电动真空助力泵(EVB)所提供的助力实现制动力输出。

根据牛顿第二定律可建立车辆纵向模型的一阶线性微分方程,如(2)式所示:

  (2)

式中Mv 为车身质量,v为实时车速,Fb 为制动力,Fa为空气阻力,g为重力加速度,θ为路面坡度,Fθ为怠速驱动力。

3.3.2 速度曲线规划

 

图6 预定速度轨迹   

 

 图7 预定加速度轨迹

规划的曲线必须尽可能的平顺并且没有紧急制动情况的出现,在速度控制领域内有多种方法可实现。但对于如何使驾驶员在加减速时感觉较舒适,则是目前速度控制领域内比较重要的课题。Kyongsu Yi的论文中指出,驾驶员感到较为舒适的加减速不应高于2.5m/s²。根据此研究成果,本系统的预定速度设定为1.6Km/h如图6,预定加速度设为1.4m/s²如图7,理论上的车辆制动距离为7cm。根据图6的预定速度轨迹可将其分成加速、匀速以及减速三个状态,首先控制车速以定加速度从0Km/h升至1.6Km/h;若系统监测到StopFlag为0(即车—障碍物在停车范围以外),系统维持车速处于匀速状态即以1.6Km/h定速行驶;若系统监测到StopFlag为1(即车—障碍物在停车范围以内),则进入减速状态,速度以定加速度从1.6Km/h降至0Km/h。

3.3.3 速度控制器设计

速度控制器采用离散型的增量PI算法。经整理后如(3)式所示。

       (3)

式中KP=K*T/Ti,KI=K,K为增益系数,Ti为积分时间,T为足够小的常量本系统选取系统程序运行周期时间即50ms。

由于车辆影响系统动能因素较多,故在增量式PI算法的基础上结合Fuzzy算法。(3)式经Z变换整理后如(4)式所示:

 

                    (4)

 

根据(4)式构建的Fuzzy—PI控制器如图8所示:

图8 Fuzzy—PI控制器

在Fuzzy算法中,本系统利用实时车速与预定车速轨迹的误差量定义相关特征变量的归属函数,即实时速度归属函数(图9)、速度误差量归属函数(图10)及速度积分误差量归属函数(图11)。上述三个归属函数均采用三角形分布的归属函数,由于试验车是自动档车型,怠速下的速度最大值在5Km/h左右,而本系统是将车速控制在3Km/h以下,故速度归属函数介于0-3Km/h。一般而言,考虑微控制器的运算速度情况下,所设计的语意法则不超过9个,结合本系统轮速传感器的有效精度是0.01Km/h,故在上述三个归属函数均采用了5个模糊语言变量。

[page]

 

图9 实时速度归属函数 

 

 图10 速度误差量归属函数

图11速度积分误差量归属函数

相关归属函数的定义原则是当速度误差较大时调整为较大参数,使得速度可以快速的收敛到预定轨迹,反之若误差量较小时调整为较小参数,使得速度可以稳定在预定轨迹附近。速度积分误差量的归属函数定义则是为了解决系统的稳态误差,即减小实时车速与预定轨迹车速间的误差。KP及KI的模糊控制表如表2、3所示。

经多次测试后得到的特征变量参数如(5)及(6)式所示。最后在解模糊化时,本系统采用最大隶属度去最大值法。

KP={18/NB,10/NS,5/ZR,10/PS,20/PB}         (5)

KI={20/NB,10/NS,8/ZR,10/PS,15/PB}           (6)

   

表2 KP模糊控制规则表

 

 表3 KI模糊控制规则表

四. 软件实现与现场结果

4.1 系统结构

基于LabVIEW的倒车自动刹车系统主要分为两个部分:

4.1.1 数据采集(下位机部分)

依据前文所述的系统模块可将数据采集分为两个部分。在测距模块中,驱动NI 9264模拟输出产生周期为30ms的40kHz超声波激励信号,通过NI9205接收反射波信号,并利用Labview的脉冲探测函数计算超声波的传播时间,从而计算出车—障碍物的实时距离。在刹车控制模块中,利用NI 8473与车载CAN网络无缝连接,实现DPC与车载设备的数据交互。

4.1.2 数据处理(上位机部分)

数据传输及数据处理(即DPC)是基于LabVIEW2010平台开发的。刹车控制模块的数据传输通过LabVIEW2010平台下的CAN模块与车载CAN网络实时通信,获取实时车速及EVB实际压力值的CAN报文,并通过相同的CAN通道发送EVB期望压力值报文。DPC使用LabVIEW平台中的“生产者—消费者”模型对数据采集部分返回的大量实时数据按一定周期进行处理,以此减少系统耗时从而加快程序处理的速度并提高系统的响应速度。通过LabVIEW状态机结构对车辆实时状态进行特征参数提取,以此确定车辆在倒车行进过程中的加速状态、匀速状态以及减速状态,并针对不同状态进行相应的控制。

4.2 控制软件界面及功能

数据传输、处理与控制软件界面主要包括3大功能模块:参数配置模块、功能验证模块以及报表输出模块。界面如图12、13、14所示。

图12 初始界面

图13 参数配置界面

图14 功能验证界面

4.3 数据实时展示及试验结果

4.3.1 实时数据展示

在参数配置界面对Fuzzy—PI算法的特征变量的相关参数进行配置,继而通过功能验证模块进行实车测试效果。通过对测试数据的综合分析,实时修改算法的相关参数值。图15即为在实车验证状态下的实时数据曲线图。

图15 基于LabVIEW的倒车自动刹车系统的实时曲线

4.3.2 成果分析

报表输出功能将速度轨迹及加速度轨迹以Excel的格式输出,其结果如图16、17所示。

图16 基于LabVIEW的倒车自动刹车系统的控制结果

图17 基于LabVIEW的倒车自动刹车系统的加速度轨迹

图16所示的测试结果显示实际车速轨迹与预定车速轨迹的稳态误差在-0.2Km/h到0.3Km/h之间,且车辆完全制动时车—障碍物实时距离为54cm。图17显示整个控制过程中的实时加速度轨迹,在匀速状态时的加速度均低于1.4m/s²,远小于人体舒适的加速度极限(≤2.5m/s²)。由此可知,实际控制效果已基本达到预期目标。

[page]

4.3 现场成果

本系统安装于长安志翔CV8上,车载CAN网络通过NI 8473与笔记本电脑上的LabVIEW平台实时通信。同时将超声波传感器安装于车后牌照正上方,并通过NI DAQ平台配置NI9269及NI9221的相关参数,从而驱动超声波传感器。图18为超声波传感器与相关数据采集设备的连接图,图19为现场时设备连接图。

图18 超声波传感器的设备连接图

图19 现场设备连接图

五. 结论

从技术层面讲,NI DAQ平台和LabVIEW开发环境无缝连接使用户轻松的通过图形化开发环境访问底层硬件,快速建立系统原型和数据采集应用,大大降低了系统开发的技术风险。LabVIEW强大的数据采集和信号处理功能极大地节省了采集终端软件的开发时间,在NI DAQ平台和LabVIEW CAN模块的配合下使得采集终端能够实时并且高质量地完成数据采集、信号处理、数据传送和数据处理的工作,为整个系统的开发研究提供灵活、强大的底层硬件支持。

基于LabVIEW平台的倒车自动刹车系统已在长安志翔CV8上成功实现相关功能,该系统的成功开发在速度控制领域及相关辅助系统开发方面取得突破性进展。同时对长安汽车有限公司正在进行的全自动泊车系统的开发奠定夯实的技术基础。

关键字:LabVIEW  低速控制  刹车控制 引用地址:基于LabVIEW的倒车自动刹车系统开发

上一篇:安森美半导体用于汽车空调系统的高能效方案
下一篇:安森美应用于汽车自动空调的电源、电机驱动及分立元件方案

推荐阅读最新更新时间:2024-05-02 22:46

Labview中引用,属性节点,局部变量之间的区别
在Labview中我们经常会碰到这样几个概念,那就是控件的引用,属性节点以及局部变量,他们之间到底有哪些区别呢? 首先谈引用,在Labview中长称为引用句柄,在Windows编程中,引用句柄指的是指向指针的指针,换句话说,引用句柄保存的是其他一些数据类型的地址,例如窗口句柄。在Labview中,控件的引用句柄指的也是指向特定数据类型的指针,在Labview中,控件的引用句柄是长度为四个字节,引用句柄不但能够表示控件的类型,还与空间一一对应,这是通过句柄的编号来实现的,引用句柄自身未代表任何空间,但是通过引用句柄指向特定的实例后,就可以操作具体的控件了,简单的理解就是通过对引用句柄的操作,可以改变控件的属性参
[测试测量]
用PXI硬件开发分析能源存储设备特性的仪器
  可再生能源是当今世界上增长最快的市场之一。能源存储技术在风能、太阳能和生物能等“绿色”能量产生源中起着重要的作用。应用于能源存储的公共和个人资金正在暴涨,使大量前所未有的研究领域推展到新电池,电容,燃料电池和其他能源存储技术上。根据可再生能源市场的需求,我们设计了SolRayo 电化学测试系统(SolRayo ETS),以满足新一代创新的电化学研究团队的需要,加快开发能源存储技术中的关键部分。   恒电位仪是用来输出或吸收电压或者电流到测试单元上,并测试它的响应的一种仪器。在快速发展的高创新产业,如可再生能源中,现有的恒电位仪产品缺乏高效率电化学研究所需要的测试自动化和易用性。通常,这些仪器的学习过程比较长,软件复杂且不易于
[测试测量]
labview深入探索----xcontrol
control是LABVIEW8.x新增的功能,LV中的CONTROL我们是再熟悉不过了,这个"X"到底代表什么那,到NI网站上也没找到它的英文定义,可能相当与ACTIVEX中的"X"?虽然无法弄清楚它的定义,但是它的作用是清楚的,我个人理解它更象VC中MFC的控件自画,也具备了一些ACTIVEX的能力,与ACTIVEX的最大区别是ACTIVEX是独立于平台的,可用于各种编程环境,从这点来说,可以把它看做LV内部的 activex,MFC中的控件自画是这样的,当我们要做一个特殊形状的控件时,可以设置它的一个属性是自画,own draw,也就是说,这个控件是用户自己画出来的,比如一个按钮,当鼠标进入它的控制区域,会自动显示凸起状态,还
[测试测量]
<font color='red'>labview</font>深入探索----xcontrol
虚拟仪器在磁轴承数字控制中的应用
   1 虚拟仪器介绍   虚拟仪器(Virtual Instrument,VI)是指通过应用程序将通用计算机与仪器硬件结合起来,用户通过友好的图形界面(即虚拟前面板)操作该计算机,如同操作自己定制的一台传统仪器一样,从而完成被测量的采集、分析、判断、显示和数据存储等。虚拟仪器具有以下特点:突出“软件就是仪器”的新概念,不需改变硬件,仅通过软件编程,用户即可定制特殊用途的仪器;支持开放的工业标准;利用计算机强大的数据处理、传输和控制能力,使系统组建、扩展更加灵活、简便,也便于构成复杂的系统。虚拟仪器既可以作为测试仪器单独使用,又可以实现测试、控制与故障诊断一体化。   DAQ(Data Acquisition:数据采集)仪器是
[测试测量]
虚拟仪器在磁轴承数字<font color='red'>控制</font>中的应用
LabVIEW在大众宝来A4轿车雨刮电机生产中的应用
  在汽车雨刮器电机生产中,如何在线测试电机性能及电机振动量,进行测试数据储存及条形码打印?工程师使用National Instruments公司的模拟采集卡及数字采集卡,配以振动传感器、磁粉制动器、力矩传感器、编码器及可控稳压电源等开发了一个性能可靠的,经济、灵活的基于PC的电机测试系统。   大众汽车公司生产的宝来A4轿车雨刮器电机为永磁式直流电机,电机工作电压为13V,额定输出功率为40W,电机引线为4线制,分别为高速端、低速端、复位端及接地端。雨刮器电机自带减速箱,减速箱内部有一开关,当复位端接有13VDC电压时,电机将先慢速旋转,当蜗轮凸点到达复位点时,减速箱内复位开关闭合,电机电枢被短路,电机能耗制动,实现雨刮器复位,
[汽车电子]
<font color='red'>LabVIEW</font>在大众宝来A4轿车雨刮电机生产中的应用
创建LabVIEW程序
  通过对LabVIEW前面板中的控件的学习,读者可以很快熟悉LabVIEW开发环境。本章将介绍如何使用LabVIEW进行程序设计,创建第一个LabVIEW程序 VI。本章主要内容包括创建一个新VI、编辑VI、运行和调试VI程序以及子VI的创建和调用。   创建新VI   在启动窗口中选择 新建VI 或在已打开窗口的主菜单选择 文件-新建Ⅵ ,新建一个新的空白Ⅵ程序。此时,系统将自动显示LabVIEW的前面板工作界面(见图),工具选板和控件选板都出现在前面板工作界面中。在该面板中可以添加所需要的控件对象。设计一个Ⅵ程序,需要设计前面板、程序框图和图标/连接器这三个部分。在实际设计过程中,具体的步骤也大体上按照这三个部分分别或交叉
[测试测量]
创建<font color='red'>LabVIEW</font>程序
小广播
热门活动
换一批
更多
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

更多精选电路图
换一换 更多 相关热搜器件
更多每日新闻
随便看看
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved