低开关频率下的不对称空间矢量脉宽调制

发布者:灵感之翼最新更新时间:2013-09-12 来源: 电子技术 关键字:低开关频率  不对称空间矢量  脉宽调制 手机看文章 扫描二维码
随时随地手机看文章
1 引言
   
随着电力电子技术的不断发展,大功率变换装置在工业生产机械传动领域的应用日趋广泛。大功率传动中,降低功率器件开关频率可有效降低开关损耗且可增大大功率变换装置输出功率,但也会造成一系列问题。目前,国内外学者对大功率变换装置低开关频率控制系统的研究,一类侧重于低开关频率下的高性能控制策略,如文献中基于复矢量解耦的新型电流调节器,以及基于模型预测的控制方法。另一类着重于PWM的改进算法,其中较大一部分是基于开关角直接调制的优化PWM,此类优化算法存在只能实现稳态离线求解、算法较为复杂等缺陷。
    文献指出,用于固定开关频率的PWM算法可分为自然采样PWM,规则采样PWM,直接PWM这三类。其中,自然采样PWM谐波输出性能较好,但求解极复杂;目前应用较广泛的SVPWM是规则采样的一种,其实现简单,但与自然采样相比存在基带谐波系数较大的缺点;而不对称规则采样指在一个载波周期内设置两个采样点,输出谐波性能与自然采样类似。这里针对低开关频率下PWM输出谐波性能变差、控制系统带宽降低、电流畸变率增大等问题,提出将不对称规则采样与SVPWM相结合的ASVPWM,充分结合了SVPWM实现简单,不对称规则采样谐波输出性能较好的优势,有效改善了低开关频率下的PWM输出谐波性能,降低了输出电流畸变率。Matlab仿真及DSP实验验证了该调制算法的有效性。

2 不同采样方式时的谐波性能分析
2.1 不对称规则采样原理
   
以两电平载波调制为例介绍不对称规则采样原理,图1示出不同采样方式下逆变器单相桥臂的输出开关脉冲(为便于区分,此处人为加大了一个载波周期内的调制波幅值变化)。


    可见,自然采样的采样时刻由载波ur与调制波uc交点决定,输出脉冲一般不基于载波峰值对称;对称规则采样的采样点固定在每个载波周期的负峰值(或正峰值)处,输出脉冲基于载波峰值对称;不对称规则采样的采样点固定在1/4载波周期和3/4载波周期处,输出脉冲一般不基于载波峰值对称。
2.2 谐波性能分析
   
采用二重傅里叶积分进一步分析3种不同采样方式下相电压(相对于直流母线零点间的相电压)的谐波组成,定义x(t),y(t)分别为ur及uc的时域分量,具体为:
    x(t)=ωct+θc, y(t)=ω0t+θ0      (1)
    式中:ωc为载波角频率,ωr=2π/Tc,Tc为载波周期;ω0为基波(正弦)角频率,ω0=2π/T0,T0为基波周期;θc为载波的任意相位偏移;θ0为基波的任意相位偏移。
    以a相为例,3种采样方式下相电压的二重傅里叶积分表达式为:
[page]


    由式(2)~(4)可知,3种采样方式下相电压由4部分组成:直流分量、基波分量、基带谐波、载波次谐波及载波边带谐波。自然采样方式时,仅存在基波分量而没有低次基带谐波,即仅存在n=1次基波分量;存在m为奇数次的载波次谐波,m为偶数次的载波次谐波被sin(mπ/2)抵消;奇次载波频率周围的奇次谐波边带分量及偶次载波频率周围的偶次谐波边带分量,即m±n为偶数时的边带谐波分量均被式(2)中sin[(m+ n)π/2]抵消。
    对称规则采样方式下,存在基波分量及低次基带谐波;存在m为奇数次的载波次谐波;边带谐波成分不能抵消。对比不对称规则采样与自然采样,其唯一缺点就是存在奇数次的低次基带谐波,即存在n为奇数的基带谐波,n为偶数时的基带谐波被sin(nπ/2)抵消;在载波次谐波及边带谐波方面的谐波性能是一致的。因此相比对称规则采样而言,不对称规则采样有更好的谐波性能。

3 不对称空间矢量脉宽调制
3.1 原理分析
   
目前大功率传动系统使用较多的是SVPWM;虽然SPWM与SVPWM实现方式大不一样,但SVPWM实质上是对SPWM的一种改进,即在正弦波调制信号上注入了一定的零序分量,且其本质属于规则采样PWM。
    两电平SVPWM中,对于任意给定空间电压矢量U,均可由离它最近的参考电压合成得到。对比SVPWM与SPWM,见图2。讨论U在第一扇区时的SVPWM,ua,ub,uc为实际三相调制波,uma,umb,umc为三角载波PWM对称规则采样时的等效调制波信号,ur为三角载波。图2为两个开关周期(2Ts)内的调制图,其中,Sa,Sb,Sc为SVPWM时各相桥臂的开关动作;T00(T07),T1,T2及T00’(T07’),T1’,T2’分别为两个周期中合成U的基本矢量U0(U7),U1,U2的作用时间;k0,u0为矢量分配因子,k0,u0∈[0,1]且k0+u0=1。在七段式SVPWM实现中,通常取k0=0.5同时,由图2可知,与规则采样SPWM对应的SVPWM三相输出脉冲在一个Ts内都是对称的,即目前采用的SVPWM其本质是一种对称规则PWM。若改变k0,如令k0在相邻Ts内周期性地取1和0,则图2会演化为图3。


    由图3可知,一个载波周期Tc内的等效调制波信号(uma,umb,umc)不再保持恒定,信号幅值更加逼近实际调制信号;此外Tc=2Ts,因而更适用于低开关频率调制;同时,一个Tc内的脉冲信号不再基于峰值对称,呈现出不对称规则采样的特性。令开关周期T’=2Ts,则图3即为ASVPWM与等效SPWM的对比关系。

[page]

3.2 仿真结果
   
基于Matlab/Simulink搭建带阻感负载的逆变回路,对开关频率fs=500 Hz时SVPWM,ASVPWM的相电压谐波性能进行对比。三相电压源逆变器仿真参数:Udc=600V,M=0.9,阻感负载功率因数为0.9,相电压输出谐波性能见图4。


    由图4a可见,SVPWM时相电压中含有直流分量、基波分量、低次基带谐波、奇次载波分量及较多的边带谐波。当将不对称采样与SVPWM结合时,得到ASVPWM时的相电压频谱图见图4b,图中不存在偶次低次基带谐波(100 Hz,200 Hz),m±n为偶次的边带谐波分量(450 Hz,550 Hz等)被抵消,相电压总谐波畸变率降低约5%。

4 实验验证
   
搭建了基于TMS320F28335型DSP实验装置,对ASVPWM进行验证,阻感负载参数为R=1 Ω,L=5 mH。首先进行ASVPWM算法验证,fs=500 Hz时,a,b两相上桥臂器件开关脉冲见图5a,图5b为放大后一个Ts内的脉冲波形。


     可见,当基波频率f=50 Hz,fs=500 Hz时,一个基波周期内输出10个脉冲;选择一个Ts进行放大后,输出脉冲并不对称,验证了所提的ASVPWM算法的正确性。
    采用Fluke43B电能质量分析仪对fs=500 Hz时两种调制方式下的a相电流进行测量分析,如图6所示。


    比较图6a,b与6c,d可知,当fs低至500 Hz时,采用SVPWM时输出电流波形THD较大;当采用这里提出的ASVPWM时,电流THD由20%降至12.1%,验证了这里提出的ASVPWM算法的正确性与可行性。

5 结论
   
基于二重傅里叶的谐波分析表明,自然采样方式具有好的谐波输出性能;相比对称规则采样,不对称规则采样更接近自然采样方式,只是在低次基带谐波分量上有差别,不对称规则采样更适合开关频率较低的情况;七段式空间矢量脉宽调制本质是一种对称规则采样,此处研究的不对称空间矢量脉宽调制,在延续空间矢量脉宽调制算法简单、电压利用率高的同时改善了脉宽调制环节的谐波输出性能;在开关频率为500 Hz时,不对称空间矢量脉宽调制时电流总畸变率比空间矢量脉宽调制低,有利于提高大功率变换装置的控制性能;在带阻感负载的逆变器上验证了两电平不对称空间矢量脉宽调制算法的可行性,对于双脉宽调制四象限运行的大功率变频装置而言,常采用三电平等多电平调制技术且网侧电流畸变率必须低于国家标准,需对不对称空间矢量脉宽调制进行某些改进。

关键字:低开关频率  不对称空间矢量  脉宽调制 引用地址:低开关频率下的不对称空间矢量脉宽调制

上一篇:一种单相两级式光伏并网逆变器控制策略
下一篇:三相PWM整流器启动冲击的抑制

推荐阅读最新更新时间:2024-05-02 22:46

单片机与控制实验(3)——直流电机脉宽调制调速
一、实验目的和要求   掌握脉宽调制调速的原理与方法,学习频率/周期测量的方法,了解闭环控制的原理。 二、实验设备   单片机测控实验系统   直流电机调速实验模块   Keil开发环境   STC-ISP程序下载工具 三、实验内容     1. 编写程序,能够在数码管上显示一个数值。   2. 固定向P1.1输出0,然后测量每秒钟电机转动的转数,将其显示在数码管,每秒刷新一次即可。   3. 使用脉宽调制的方法,动态调整向P1.1输出的内容,使得电机转速能够稳定在一个预定值附近,同时实时显示当前转速。   4. 根据输入修改电机转速目标值,设置两个转速目标值:低转速和高转速。   5. 每隔一秒钟读取两个开关的状态,如果S1按
[单片机]
单片机与控制实验(3)——直流电机<font color='red'>脉宽调制</font>调速
TL494脉宽调制控制电路
主要特征 集成了全部的脉宽调制 电路 。 片内置线性锯齿波振荡器,外置振荡元件仅两个(一个 电阻 和一个 电容 )。 内置误差放大器。 内止5V参考基准电压源。 可调整死区时间。 内置功率晶体管可提供500mA的 驱动 能力。 推或拉两种输出方式。 工作原理简述 TL494是一个固定频率的脉冲宽度调制电路,内置了线性锯齿波振荡器,振荡频率可通过外部的一个电阻和一个电容进行调节,其振荡频率如下: 输出脉冲的宽度是通过电容C T 上的正极性锯齿波电压与另外两个 控制 信号进行比较来实现。功率输出管Q1和Q2受控于或非门。当双稳触发器的时钟信
[模拟电子]
TL494<font color='red'>脉宽调制</font>控制电路
脉宽调制移相全桥开关电源设计方案
随着航空、航天和计算机事业的发展,对 电源 在体积、重量和效率等方面提出了越来越高的要求。 开关 电源 就是在这种情况下发展起来的一种小型电源。它具有体积小、重量轻、频率高、成本低、效率高等一系列优点。同时,由于它的线路简单,可靠性高,而被广泛地应用于航空、航天和 电子 计算机等方面。本文设计了一个由UC3846产生PWM进行脉宽调制的移相全桥 开关 电源。 在此 电路 中,输入为AC220V电压,经过二极管整流桥把交流电变成直流电,为了消除此直流电压的脉动,在设计时采用了π型滤波 电路 。后接一个移相全桥软开关电路,使功率管实现零电压零电流开通和关断,将电路在工作时的功率损耗减至最小。输出为±23V/15A和±200V/0.8
[电源管理]
基于ATmgea8型单片机的加热控制系统
l 引言 温度是工业生产中主要的被控参数之一,与之相关的各种温度控制系统广泛应用于冶金、化工、机械、食品等领域。文中介绍的温度测量及加热控制系统以 ATmega8型AVR系列单片机为核心部件,通过对系统软件和硬件设计的合理规划,发挥单片机自身集成众多系统级功能单元的优势,在不减少功能的前提下有效降低了硬件成本,系统操控简便。实验证明该温控系统具有很高的可靠性和稳定性。 2 系统结构及控制算法 2.1 系统总体结构 温度测量及加热控制系统的总体结构如图1所示。系统主要包括现场温度采集、实时温度显示、加热控制参数设置、加热电路控制输出、与上位机串行通信和系统核心ATmega8型单片机等。 温度采集电路以模拟电压形
[单片机]
基于ATmgea8型单片机的加热控制系统
脉宽调制开关电源控制IC
开关 电 源 这 个 名 字 我 们 大 家 都 不 会 感 到 很 陌 生。 常 见 的 计 算 系 统 电 源 录 象 机、 电 视 机 电 源 都 使 用 了 这 种 电 源 技 术。 但 是 常 常 会 觉 得 这 种 电 源 技 术 好 象 很 复 杂 根 本 不 可 能 自 已 制 作 此 类 电 源, 当 然 早 期 的 开 关 电 源 控 制 部 份 集 成 电 路 使 得 开 关 电 源 的 外 围 变 得 如 此 简 单 以 至 于 简 单 过 一 线 性 稳 压 电 源。 这 里 介 绍 的 是 sgs Thomson 公 司 生 产 的 新 型 系 列 集 成 稳 压 IC:UCX84X 之 中的 UC18
[应用]
脉宽调制(PWM) 马达驱动器电源的测试分析(上)
1.概述 自电机工程诞生以来,三相交流马达一直是工业领域的主力。它们可靠、高效、费效比高,需要少量维修或根本不需要维修。此外,交流马达(如感应马达和磁阻马达)无需与转子的电气连接,因此很容易实现阻燃,用于危险环境(如矿山)。 为了提供适当的交流马达速度控制,必须为马达提供三相电源,其电压和频率可以变化。这种电源将在定子中形成一个变速旋转磁场,使得转子按照所需的速度旋转,且滑动很小,如图1 所示。这个交流马达驱动器可以高效提供从零速到全速的全转矩,如果需要的话,还可以超速,而且通过改变相位旋转,可以很容易使马达双向运转。具有这些特点的驱动器称作脉宽调制马达驱动器。 交流马达驱动系统示意图 脉宽调制驱动器可以生成复杂波形,
[测试测量]
<font color='red'>脉宽调制</font>(PWM) 马达驱动器电源的测试分析(上)
高频脉宽调制技术在逆变器中的应用
摘要:将HPWM软开关技术应用于逆变器,在不增加任何辅助电路的基础上实现了功率管的ZVS通断。HPWM软开关方式逆变器电路控制简单,基本不增加功率管的附加应力,且开通损耗大大减少,具有可靠性和效率均高的优点。分析了方案的工作原理以及实现ZVS的条件。同时指出方案存在的问题和解决办法。研制的工作频率50kHz,1000VA的逆变器证明方案的可行性。 关键词:高频脉宽调制;软开关;逆变器;零电压开关   1 引言 由于对逆变器高频化的追求,硬开关所固有的缺陷变得不可容忍:开通和关断损耗大;容性开通问题;二极管反向恢复问题;感性关断问题;硬开关电路的EMI问题。因此,有必要寻求较好的解决方案尽量减少或消除硬开关带来的各种问题
[电源管理]
高频<font color='red'>脉宽调制</font>技术在逆变器中的应用
基于STM32平台实现SVPWM调制
SVPWM SVPWM是空间矢量脉宽调制(Space Vector Pulse Width Modulation)的简称,通常由三相逆变器的六个功率开关管组成,经过特定的时序和换相所所产生的脉冲宽度调制波,最终输出的波形可能会十分接近理想的正弦波形。具体如下图所示;左侧为复平面,即空间矢量,右侧为时域的正弦波形。 关于SVPWM原理的文章非常多,这里可以推荐一下网上一个非常不错的教程《SVPWM的原理及法则推导和控制算法详解第五修改版》,本文将如何实现SVPWM进行简单的介绍。 IQMATH TI的片子很香,控制方面,TI无疑是做的最好的方案之一,相对来说资料也非常齐全;另外TI针对没有浮点运算器的定点DSP推出了IQMATH
[单片机]
基于STM32平台实现SVPWM调制
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved