智能手机键盘控制器的实现方法介绍与比较

发布者:才富五车330最新更新时间:2013-12-09 来源: eefocus关键字:GPIO  EMI  滤波器 手机看文章 扫描二维码
随时随地手机看文章

简介

智能手机的大脑是基带处理器(Baseband),内置微型处理器和专用信号处理电路。依靠基带控制器的先进设计,通用输入/输出口(GPIO)可用来实现按键开关功能。

目前,专用键盘控制器IC已广泛用于智能手机。这些专用键盘控制器之所以排上用场,原因在于基带芯片的GPIO资源非常有限。比如,有时为了节约成本,用户将本来用于功能电话的基带芯片应用到了智能手机的设计;有时则是为了减少基带控制器与键盘之间的连接线数量,特别是对于滑盖手机,基带处理器和键盘分布在不同的PCB上。键盘控制器通常由I2C总线或SPI总线连接到基带处理器。

键盘控制器的功能可用现有的GPIO芯片或使用传统的按键扫描微型单片机实现。一些专有的键盘控制器也采用传统的按键扫描方式。这篇应用笔记则对传统的按键扫描和低EMI按键扫描方案进行了比较,并列举了省去EMI滤波器件带来的益处。

传统的按键扫描方案

图1所示是传统的按键扫描方案,基带处理器的GPIO键盘控制或某些专用的键盘控制器都采取了这个方式。有些GPIO引脚设计成“列”输出端口,驱动开关矩阵;有些GPIO引脚设计成“行”输入端口,检测按键开关的闭合。通常,没有按键按下时,每个按键上都没有电压。一旦某个按键按下,键盘控制器开始扫描所有的按键。扫描动作通过逐渐升高“列”电压的同时,来轮询监测每“行”的输入电平。一个8 x 8的开关矩阵可经过64个时钟周期完成一遍扫描。时钟频率的范围可以设定在几十kHz到几MHz之间,“列”输出电平在系统的逻辑高和逻辑低之间切换。依据键盘控制器的供电电压,逻辑高电平可以从1.8V到3.3V变化。



图1.传统键盘扫描电路。

因为“列”扫描信号的突然上升和下降造成的电磁辐射可能会影响EMI测试,尤其是那些基带处理器GPIO与键盘之间有较长布线的设计。通常,在“列”输出端口需要EMI滤波器件来降低EMI辐射。EMI滤波器可以是一级RC滤波或者二级CRC低通滤波(见图2a和2b)。EMI滤波可以使用分立的无源器件,也可使用小尺寸TDFN/CSP封装的EMI滤波器。这显然会增加成本并占用空间。[page]


图2a和2b. EMI滤波器。

低EMI(无源扫描)

Maxim的键盘控制器,如MAX7347/MAX7348/MAX7349、MAX7359和MAX7360采用一种独特的无源扫描方式,利用电流源驱动开关矩阵,并通过检测电流来检测按键动作。图3说明了无源按键扫描的工作原理。一旦按下一个按键,控制器便开始扫描所有按键。扫描时,在所有“列”端口施加电压约为0.5V的恒流源,控制器监测流过依次使能的每“行”电流。因为每一时刻只有一“列”检测到电流流过,所以,对于一个8 x 8开关矩阵,这种无源扫描方式也需要经过64个时钟周期完成扫描。在按键扫描期间,所有“列”电压都是静态的0.5V (有按键按下的列除外),在其对应的“行”端口处于扫描期间,该“列”电压降低到0V.


图3. Maxim的低EMI键盘扫描架构。

每“列”端口是由大约20μA的恒流源驱动,“行”、“列”端口只在开关接触的很短时间消耗电流。因此,与传统扫描方式相比,无源扫描因电压高、低电平变化驱动容性和阻性负载产生的功耗大大降低。

电磁辐射

1.8V供电时,用0.5V电压摆幅替代满幅度(1.8V)驱动,可有效降低电磁辐射(降低11dB)。此外,低EMI键盘扫描架构中更低的扫描频率也能帮助降低电磁辐射水平。图4是传统方案和低EMI方案的功率频谱密度(PSD)仿真图。测试基于1MHz时钟频率,供电电压1.8V,上升/下降时间0.2μs,蓝色曲线代表传统方案,绿色曲线代表低EMI方案。仿真结果表明,Maxim低EMI方案的PSD降低15dB.总之,低EMI方案的电磁辐射相比较传统方式下降15dB.鉴于如此优异的辐射指标,可以省去EMI滤波器。



图4.键盘扫描PSD仿真,蓝色曲线代表传统方案,绿色曲线代表Maxim的无源扫描方案。

波形示例

图5是MAX7359键盘控制器的波形,深蓝色波形(通道1)为“列”端口波形,淡蓝色波形(通道2)为“行”端口波形。该“行”和“列”交叉的那个按键在大约第26ms时候按下。经过约2ms的延时,键盘控制器被唤醒。控制器将“列”端口变成电流源,电压变为大约0.5V,并开始扫描。在确认一个按键依然被按下或者按键被释放前,它会按设定的去抖时间扫描2次。每对临近的扫描脉冲,右边为初始扫描,左边是第二次的去抖扫描。[page]



图5.通道1代表MAX7359“列”端口电压,通道2代表MAX7359“行”端口电压。

ESD保护和电容负载

连接到键盘的所有端口都暴露在ESD之下,有时需要达到15KV,因此需要静电保护。MAX7347、MAX7348和MAX7359内置±2kV ESD保护,MAX7360内置±8kV ESD保护。外部ESD二极管用来配合内部保护电路,共同提升防静电等级。但ESD二极管增加了端口容性负载。

通过用互不相同的“按键按下”和“按键释放”编码,控制器可以识别同时发生的多个“按键按下”事件以及他们的顺序。但是,在相应的“行”“列”端口,容性负载会成倍增加。每个“列”端口由一个20μA、±30%的电流源驱动。施加在“行”端口输出晶体管栅极的正脉冲,将每“行”端口下拉到地。当“行”端口处在地电位时,某“列”端口因为按键闭合而连通,也被下拉到地,由此检测到一个按键按下的动作。

正脉冲施加在“行”端口输出晶体管栅极,并在稍后在开关的闭合点会有一个放电和充电过程。紧随正脉冲之后,开关闭合点快速从0.5V放电到0.当正脉冲消失,开关闭合点又被充电到0.5V,基于下面公式:

实际应用电路中,“行”、“列”端口电容,包括外加的ESD保护二极管,都参与到充电过程。充电时间长于扫描周期时,有可能发生错误的“按键按下”检测。被误检的按键是当前这个被按下的“列”与紧随的下一个“行”扫描交叉的那个按键。

为了限制充电时间少于13μs同时预留2.625μs进行按键检测,并考虑电流源30%的误差,根据下式,总电容应该小于364pF:



每个端口的电容,包括外置ESD二极管引入的电容,应该少于Cport= Ctotal/3 = 121pF,假设有两个按键,shift和一个常用键被按下。上面的计算考虑了2行和1列端口的电容。当端口电容为20pF时,允许外置电容是101pF.

上述计算方法只适用于被按下的按键属于同一“列”的情况。对于经常会同时按下键,如shift键,可以通过将其定义在独立的“行”、“列”端口来避免端口叠加过多电容的问题。对于每“列”端口单独按下的按键,端口允许的电容是:Cport= Ctotal/2 = 182pF.每个端口的电容是20pF,因此,外部器件的电容可以达到162pF.

结论

低EMI键盘控制器方案已经在智能手机应用中普遍得到认可,相比传统的键盘扫描方案,可以省去EMI滤波器。使用低EMI开关控制器能提升系统的整体性能并降低成本。负载电容的估算也适用于绝大多数手机硬件的键盘电路。但要避免使用负载电容很大的ESD外围器件。

关键字:GPIO  EMI  滤波器 引用地址:智能手机键盘控制器的实现方法介绍与比较

上一篇:2017年新兴可穿戴设备市场销量将达1.25亿台
下一篇:智能家庭网络的革命时代已经来临

推荐阅读最新更新时间:2024-05-02 22:53

高精度激光直写数字伺服滤波器的设计
激光直写技术是一种近年来应用广泛的超精密加工技术。该技术是一种利用强度可变的激光束,在基片表面实施有规则的高精度扫描。在扫描过程中,光刻基片随载物平台而运动。因此影响光刻元件的质量取决于载物平台的定位精度以及运动的稳定性,影响光刻元件的快速性取决于系统的响应度。 基于数字式伺服的运动控制器是超精密定位系统的关键。由于数字伺服滤波器是数字式伺服的运动控制器的核心,从而数字伺服滤波器的设计将影响系统的定位精度。 数字伺服滤波器是指系统的闭环控制与调节采用数字技术,所有控制调节实现软件化。调节器的全部软件化使控制理论中很多控制思想和手段得以应用。同时利用软件很容易完成参数的自由化和故障的自诊断功能,使系统控制性能大大提
[模拟电子]
GPIO的配置及使用(MC9S08AW60)
基础必备知识 AW60有7个GPIO接口,分别是A、B、C、D、E、F、G。每个接口最多对应8个GPIO引脚,但对每个GPIO接口编程时,寄存器设置都要是8位,只是没有引脚的位无效。用8位二进制数表示寄存器的值,8位二进制数从右向左依次表示为GPIO 0~7个 引脚。以0b开头的数是二进制,0x开头的数是十六进制(0b00001111=0x0f,0b11110000=0xf0,就是把二进制传化为十六进制)。用单片机实现什么功能其实就是对寄存器进行操作。 每个I/O(GPIO)管脚(引脚)的功能受5个寄存器的控制: 一、数据寄存器 (1)命名规则:PT+该端口(接口)的名称+D 如:PTAD、PTBD、PTCD等 (2)设置每个
[单片机]
便携产品EMI滤波解决方案
  在各品牌间激烈竞争的推波助澜下,便携式电子产品在使用功能上呈多元化发展,且日渐复杂。由于其体积小、产品工作频率愈来愈高,以及操作电压愈来愈小,导致各功能模组产生的电磁信号在极小的体积内相互干扰的情况越来越严重。另一方面,随着各类电子产品(包括商用以及工业用)的日趋普及,对于便携式电子产品的使用者而言,其所在环境的周围处于操作使用中的电子产品数量密度越来越高,这些电子产品所累积产生的电磁辐射干扰也就更加严重,从而使得电磁干扰( EMI )问题日趋复杂严重。   晶焱科技(Amazing Microelectronic)的技术团队在静电放电( ESD )保护技术上,累积了丰富的技术与经验。该公司的电磁干扰 滤波 器产品,主要就
[电源管理]
便携产品<font color='red'>EMI</font>滤波解决方案
关于STM32 GPIO配置模式
其实关于GPIO模式,手册有非常详细的说明,可见好好查看Datasheet有多么重要!! 首先关于stm32的GPIO口有输入输出之分,这点与51单片机使用的双向IO口有区别,这就需要根据我们具体是输入还是输出配置为相应的输入输出模式。输入就是输入模式,输出就是输出模式,两者不能混用。 下面这段话是手册这么描述GPIO口的: 通用I/O(GPIO) 复位期间和刚复位后,复用功能未开启, I/O端口被配置成浮空输入模式(CNFx =01b, MODEx =00b)。 复位后, JTAG引脚被置于输入上拉或下拉模式: ─ PA15: JTDI置于上拉模式 ─ PA14: JTCK置于下拉模式 ─ PA13: JTMS置于上拉模式 ─
[单片机]
关于STM32 <font color='red'>GPIO</font>配置模式
便携产品EMI滤波解决方案
手机是近年来最流行的便携式电子产品之一。在每台手机中,都一定至少有一张SIM(用户识别模块)卡,用于用户识别以及存储资料。而在新款的智能手机中,无论是哪种手机品牌,大多都有MMC(多媒体卡)/SD(安全数字存储)卡,以供照相、电话簿、e-mail或短消息等资料的存储之用。   在正常使用的状态下,手机SIM卡或MMC/SD卡在资料传输的过程中,其传输信号基本频率(简称基频)的倍频谐波辐射信号出现在手机的通讯频段内的时候,会造成手机射频通讯信号某种程度的干扰。   反之,手机射频通讯信号所产生的辐射,也会耦合到SIM卡或MMC/SD卡的资料传输信号之中,造成信号波形的失真。严重的话,将导致资料传输发生错误。   针对SIM卡及MM
[模拟电子]
便携产品<font color='red'>EMI</font>滤波解决方案
STM32学习之GPIO详解
GPIO: STM32 的(64引脚的)IO口一共有3个,分别是PA、PB、PC. STM32 的IO端口可以由软件配置成8种模式: 1,输入浮空 2,输入上拉 3,输入下拉 4,模拟输入 5,开漏输出 6,推挽输出 7,推挽复用功能 8,开漏复用功能 STM32 的每个IO端口都有7个寄存器来控制。他们分别是:配置模式的2个32位的端口配置寄存器CRL和CRH;2个32位的数据寄存器IDR和ODR;1个32位的置位/复位寄存器BSRR;一个16位的复位寄存器BRR;1个32位的锁存寄存器LCKR;我们常用的IO端口寄存器只有4个:CRL、CRH、IDR、ODR。 注意(在配置 ST
[单片机]
有源和无源滤波器混合并行方案在铁路牵引站谐
1 研制慨况 图1 混合型补偿装置电路结构   在并联式混合型补偿装置中,有源滤波器的主回路采用效率高、损耗小的电压源脉宽调制(PWM)逆变器,有源滤波器的作用主要是产生补偿谐波电流的电流IC,无源滤波器主要用于补偿无功,并兼顾补偿某指定次数的谐波。这样安排的优点是可以大大减小并联式有源滤波器的容量,便于并联式有源滤波器的应用。在串联式复(混)合型补偿装置中,有源滤波器的作用是产生补偿谐波电压的电压UC,使电源侧与非线性负荷之间实现谐波隔离。其优点是可大大减小串联式有源滤波器的容量,无源滤波器既可补偿无功又可补偿谐波。其缺陷是应用于高电压等级的串联式有源滤波器的安全隔离和保护,目前在技术方面仍存在一些困难,因而只能
[电源管理]
有源和无源<font color='red'>滤波器</font>混合并行方案在铁路牵引站谐
MSP432P401R TI Drivers 库函数学习笔记(四)GPIO
平台:Code Composer Studio 10.4.0 MSP432P401R SimpleLink™ 微控制器 LaunchPad™ 开发套件 (MSP-EXP432P401R) API GPIO API官方手册 头文件 #include ti/drivers/GPIO.h 函数 (机翻) void GPIO_clearInt (uint_least8_t index) 清除GPIO管脚中断标志 void GPIO_disableInt (uint_least8_t index) 禁用GPIO脚中断 void GPIO_enableInt (uint_least8_t index) 使能GPIO脚中
[单片机]
MSP432P401R TI Drivers 库函数学习笔记(四)<font color='red'>GPIO</font>
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved