SOPC实现的PCI总线高速数据传输系统

发布者:码字探险最新更新时间:2014-02-21 来源: ofweek关键字:SOPC  PCI总线  数据传输系统 手机看文章 扫描二维码
随时随地手机看文章
    PCI (Peripheral CompONent Interconnect)总线,即外围部件互连总线,是目前应用最广泛的一种高速同步总线,在32位总线宽度33Mz时钟下,其理论最大传输速率可达132Mbyte/s (64位总线宽度66MHz时可达到528Mbyte/s),因此成为上述侦察接收系统中高传输速率、低成本PC接口的首选实现方式。目前,实现PCI总线接口的常用方法有两种:一是采用专门的PCI桥芯片实现PCI接口,如PLX公司的PCI905X系列芯片等;二是使用可编程芯片实现PCI接口。

  本文提出一种采用可编程片上系统(SySTem-On-Programmable-Chip,SOPC)实现侦察接收机PCI总线高速数据传输系统的设计方案,并采用直接存储器访问(DIRect Memory Access,DMA)传输方式来提高数据传输速率。

  1 PCI总线接口方案设计

  在PCI总线接口标准中,根据数据传输的发起者所在位置,PCI接口有从模式和主模式两种工作模式。根据工作方式的不同,DMA传输方式可分为连续式DMA (Continuous DMA)和集散式DMA(Scatter-Gather DMA)两种。

  1.1 PCI模式的选择

  PCI总线标准中,由PC发起数据传输、读/写PCI接口卡的模式称为从模式。这种模式只要求PCI接口设备具备PCI从设备的功能,接口逻辑相对较简单;主模式是由PCI接口卡主动读写PC内存,PCI接口的逻辑相对复杂。频繁地要求PC发起数据传输会占用PC的资源,为了减少PC的负担,使其有更多的资源用于后续的数字信号处理,在侦察接收系统中,PCI接口卡的传输模式选择主传输模式。

  1.2 DMA传输方式的选择

  DMA是提高数据传输速率和微处理器使用效率的一种数据传输机制。连续式DMA用于实现连续数据块的传输,即在一次DMA传输中设备端读/写物理地址连续变化(读存储器空间)或不变化(读IO口),PC端的物理存储地址连续变化。集散式DMA用于实现不连续数据块的传输,各传输数据块的起始读/写地址和长度都可以不同,它采用一个寄存器链表存储每个数据块的读/写起始地址和长度,DMA传输过程中自动从该链表加载地址和长度信息。集散模式DMA应用灵活,其缺点是在传输完一个数据块之后要重新配置DMA控制寄存器的值,速度比连续模式稍慢。在侦察接收系统中,DMA传输模式选择连续式传输模式。

  1.3 PCI总线DMA传输方案设计

  PCI接口总体结构框图如图1所示。数据输入到乒乓RAM缓冲区,乒乓切换信号通知CPU数据准备好,CPU通过PCI桥的控制状态寄存器判断PC端是否备妥,如PC备妥则配置并启动DMA控制器,DMA控制器读口从乒乓RAM中读数据,写口将数据写至PCI总线访问端,PCI总线接口单元申请并获得PCI总线访问权,将数据送上PCI总线。

         

  2 PCI总线接口的SOPC实现

         

SOPC是Ahera公司提出的一种灵活、高效的片上系统解决方案,它将处理器、存储器、I/O口以及一些通用的功能模块集成在一个PLD器件上,构成一个可编程的片上系统。利用SOPC开发侦察接收机中的PCI总线接口,具有开发周期短、系统稳定性好的优点。

        

  2.1 系统实现

  PCI总线接口的SOPC内部结构如图2所示。实现PCI总线DMA传输系统使用到4类功能模块,分别是实现PCI桥逻辑的pci_comiler组件(pci_c ompiler)、负责数据传输的DMA控制器(dma)、控制整个SOPC的NiosII处理器(cpu)及其数据程序存储器(onchip_mem),以及SOPC和外部用户逻辑通信的接口模块(BA1、DMARD和datardy),上述组件通过avalon总线连接在一起组成SOPC。[page]

  PCI总线DMA传输系统功能模块之间的交互过程如图3所示,过程描述如下:

  (1)CPU等待PC使能DMA传输,PC使能DMA后,执行(2);

  (2)PC等待乒乓RAM的数据准备好信号,数据准备好后,执行(3);

  (3) CPU将DMA的读/写地址和传输长度参数写入DMA控制器中,使能DMA控制器,DMA控制器开始数据传输,即读口通过DMARD接口从RAM中读数,写口将数据写到PCI桥,PCI桥将数据送至PCI总线;

  (4)当传输结束后,DMA控制器产生一个中断(IRQ1)送CPU;

  (5)CPU判断传输是否完成,传输完成则通过PCI桥向PC发送中断,并执行(1),开始下一次DMA传输;

  (6)PCI总线发生异常时,PCI桥逻辑中断CPU,CPU查询异常状态,并自动从异常中恢复。

2.2 PCI总线异常的自动处理

  PCI总线DMA传输过程中,可能出现的异常包括:

  (1)PCI总线上SERR信号为高,系统错误。

  (2)PCI总线上PERR信号为高,数据奇偶校验错误;

  (3)主设备或从设备中止传输;

  (4)主设备或从设备中止传输,或重试次数超过门限,导致PCI桥对总线读/写失败。

  在侦察接收系统设计中,上述异常一旦发生,PCI接口便中断NiosCPU,CPU接收到中断后,通过查询PCI桥的控制寄存器访问(Control RegisterAccess,CRA)空间,获得异常信息。系统错误发生时,PCI接口设备是没有办法恢复的,在这种情况下,NiosCPU可点亮指示灯,指示系统错误发生;其它异常情况发生后,Nios CPU可立即通过对DMA控制器的状态空间的长度写零来停止DMA传输,然后重新启动DMA传输,让系统从异常中恢复过来。

  2.3 提高PCI总线DMA速率的优化措施

  为了尽可能提高DMA传输速率,本方案中共采取了以下三个方面的措施。

  (1)PCI总线的突发传输与Avalon总线的流水线操作

  为了提高系统传输速率,应充分利用PCI总线的突发传输特性,使PCI总线处于突发传输状态。为此,在系统设计中,一方面使Avalon总线工作于流水线模式下,降低Avalon总线的延迟时间;另一方面适当增大缓存存储空间,避免因缓冲区满造成的传输延迟等待。

  (2)DMA控制的优化

  为了使DMA传输更为灵活,如程序运行过程中改变DMA长度、读写地址、数据的帧长度,以及发生异常时程序自动恢复等,本文中使用Nio sCPU控制DMA传输。CPU的主要任务是在PC使能DMA和数据准备好时启动DMA传输,应尽可能使程序紧凑,减少冗余操作,做到条件具备立即启动DMA传输。

  (3)功能模块的时钟设置

  如图2所示,SOPC中包括7个功能组件,为了进一步提高系统的速度,需要分别让这7个组件的时钟处于最佳状态。PCI总线访问相关组件的时钟为33MHz,Nios CPU相关的组件运行在150MHz时钟上。使系统在正确稳定运行的基础上,最大限度地提高运行速度。

  3 结束语

  该方案将PCI桥和用户逻辑在一片FPGA中实现,减少了硬件电路的复杂度、降低了系统成本;采用SOPC创建PCI桥,大大缩短了开发周期,提高了系统的可靠性,且因使用了片上Nios CPU进行DMA的在线配置和自动异常处理,使DMA传输更加灵活。通过在EP3C120芯片上验证,该设计能够实现大于100Mbytes /s的PCI总线DMA传输速率。

关键字:SOPC  PCI总线  数据传输系统 引用地址:SOPC实现的PCI总线高速数据传输系统

上一篇:现场总线产品在无纺布生产线中的应用
下一篇:PCI驱动程序开发实例

推荐阅读最新更新时间:2024-05-02 22:59

基于DSP的以太网通信接口设计
  概述   TM1300是Philips公司推出的新一代高性能多媒体数字信号处理器芯片。基于TM1300的 DSP 应用系统适合于实时声音、图像处理,可广泛应用于会议电视、可视电话、数字电视等应用场合。它不仅具有强大的处理能力,同时还具有非常友好的音频和视频以及SSI和PCI等I/O接口,因此可以根据应用的需要灵活地构造各种视频通信系统。鉴于目前计算机网络的普及和网上视频业务的发展,很有必要为TM1300视频编码系统开发一个以太网接口以拓宽其应用范围。开发以太网接口的一种合理思路是利用TM1300集成的PCI接口来驱动专用的以太网接口芯片。由于目前多数以太网接口芯片(如Real- tek8029,Realtek8139等)都采用
[嵌入式]
基于DSP的以太网通信接口设计
PCI总线接口芯片PCI 9052及其应用
引言 PCI(Peripheral Compornent Interconnect,即外围部件互连)总线是一种先进的高性能32/64位地址数据复用局部总线,该总线是以INTEL为首的多家集团设计的, PCI总线可以同时支持多组外围设备,且处理器和时钟频率无关,可以提供高达132MB/s的数据传送速率,PCI总线具有严格的规范,只要符合PCI规范的扩展卡,那么,插入任何PCI系统就能可靠地工作,是当今PC领域中流行的总线。 PCI总线协议非常复杂,目前实现PCI接口的有效方案分为两种:即使用可编程逻辑器件和使用专用总线接口的器件,可编程逻辑器件实现PCI接口比较灵活,可以利用的器件比较多,现在有许多生产可编程逻辑器件的厂商(
[嵌入式]
嵌入式逻辑分析仪加速SoPC 设计
引言 在国内目前的注塑机行业里,使用液压传动的居多。对注塑机进行全电机化是市场新要求,也是必然趋势。采用伺服系统对注塑机进行全电动化,是现在比较流行的做法。但由于伺服系统成本高,再加之海关税和增值税,使得伺服系统的产品在市场上缺乏价格竞争力。考虑到性价比和现在的技术,选择矢量控制变频器和带有实时操作系统的控制器控制三相交流异步电机,并采用智能控制算法,对注塑机进行全电动化,是一种可行的方案。 采用Itron规格编写的RTOS与其它RTOS相比较,具有效率高、可靠性好、编程容易、移植性强、易于调试、简化通讯标准、高度的开放性、标准化等优点,是世界上工业应用最为广泛的实时操作系统,这表明Itron有潜力变成嵌入式RTO
[测试测量]
嵌入式逻辑分析仪加速<font color='red'>SoPC</font> 设计
基于CPCI总线架构设计的实时图像信号处理平台
DSP+FPGA混用设计 为了提高算法效率,实时处理图像信息,本处理系统是基于DSP+FPGA混用结构设计的。业务板以FPGA为处理核心,实现数字视频信号的实时图像处理,DSP实现了部分的图像处理算法和FPGA的控制逻辑,并响应中断,实现数据通信和存储实时信号。 首先,本系统要求DSP可以满足算法控制结构复杂、运算速度高、寻址灵活、通信能力强大的要求。所以,我们选择指令周期短、数据吞吐率高、通信能力强、指令集功能完备的DSP。同时也考虑了DSP功耗和开发支持环境等要素。 由于从探测仪传来的低层A/D信号,其差值预处理算法的数据量大,对处理速度的要求高,但运算结构简单,选用百万门级FPGA进行硬件实现。采用DSP+FPGA混用
[嵌入式]
PCI总线的信号定义
PCI总线是一条共享总线,在一条PCI总线上可以挂接多个PCI设备。这些PCI设备通过一系列信号与PCI总线相连,这些信号由地址/数据信号、控制信号、仲裁信号、中断信号等多种信号组成。 PCI总线是一个同步总线,每一个设备都具有一个CLK信号,其发送设备与接收设备使用这个CLK信号进行同步数据传递。PCI总线可以使用33MHz或者66MHz的时钟频率,而PCI-X总线可以使用133MHz、266MHz或者533MHz的时钟频率。 除了RST#、INTA~D#、PME#和CLKRUN#等信号之外,PCI设备使用的绝大多数信号需要与CLK信号同步。其中RST#是复位信号,PCI设备使用INTA~D#信号进行中断请求。本篇并不关心PM
[嵌入式]
基于PCI总线的STM32运动控制卡的设计
伴随着计算机的普及,PC的性能、可靠性及应用环境也已经今非昔比,在工业领域方面PC拥有大量的支持软件用以改善用户界面、图形显示、动态仿真、故障诊断、网络通讯等诸多功能,此外,在总线的开发也因PC丰富的接口资源和模块化设计而变得简单。因此,基于PC的开放式数控系统绝对是未来控制系统主流主流方向,发展开放式和形成具有自主产权软件型数字控制系统,是我国数控发展迈出实质性突破和赶超世界先进水平的一次良机。因此,文中研究课题主要对数控系统实际要求出发,结合PC和高性价比的ARM系列芯片,利用模糊控制算法,设计一款性能稳定,高精度的伺服控制器,为推进伺服技术的发展具有重要意义。 1 系统结构 本系统采用的是“PC+运动控制卡”形式。其
[单片机]
基于<font color='red'>PCI总线</font>的STM32运动控制卡的设计
PCI2040将TMS320VC5420桥接到PCI总线
  PCI2040是TI公司生产的专门用于DSP与PCI总线之间的桥接芯片,内部原理图如图1所示。关于PCI2040具体介绍可以参照TI公司的相关资料(见参考文献1)。PCI局部总线标准由Intel公司提出并由外围部件联合专门权益组织(PCISIG)制定。目前PCI总线已不再是一种局部总线,而成为一种受欢迎的高端总线和现代总线,被广泛运用于图形、图像、动画及其它各种外设对高速数据进行传输。   PCI总线的主要优点是高性能,(数据传输率可达到132/264Mbps)总线通用性强、低成本、使用方便灵活。 PCI2040可以接口8位TMS320c54xHPI总线或者16位TMS320c6x HPI总线。本文介绍如何通过PCI2040
[嵌入式]
基于FPGA的PCI总线接口设计
摘 要:PCI是一种高性能的局部总线规范,可实现各种功能标准的PCI总线卡。本文简要介绍了PCI总线的特点、信号与命令,提出了一种利用高速FPGA实现PCI总线接口的设计方案。 关键词:PCI总线;信号;命令;协议 ---在现代数据采集及处理系统中,ISA、EISA、MCA等扩展总线已无法适应高速数据传输的要求,而PCI局部总线以其优异性价比和适应性成为大多数系统的主流总线。 PCI总线特点 ---PCI总线宽度32位,可升级到64位;最高工作频率33MHz,支持猝发工作方式,使传输速度更高;低随机访问延迟(对从总线上的主控寄存器到从属寄存器的写访问延迟为60ns);处理器/内存子系统能力完全一致;隐含的中央仲裁器;多路复
[半导体设计/制造]
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved