在目标硬件完成之前实现对人机界面的仿真,需要设计工程师在PC机上用软件构建人机界面原型。本文针对构建人机界面原型时所采用的工具语言和代码编写风格,以及不同语言编写的文件之间的接口问题进行了分析,对仿真设计人员有较好的指导作用。
构建一个人机界面原型能够帮助设计工程师在设计早期理解接口对设计的要求和接口的可用性。下面将探讨一种当目标硬件还远未实现时,在PC机上构建人机界面原型的方法。构建这类原型的主要目的有二。
1. 使同一个设计组中的其他成员能够看到该设备的工作过程。当我们在纸上设计一台交互式设备时,要判断设计中所描述的交互性能否实际实现,需要很大的想象力。而如果构建一个工作原型,就会使情况清晰许多,并且允许更多的旁观者来评论正在计划中的接口设计得怎样。很多时候,用接口原型进行试验,还能帮助设计工程师决定真正设计出的硬件需要多少按钮、多少LED、多少数字显示器或文本显示器。
2. 当硬件没有工作时,利用接口原型来为人机界面编写软件。为达到这一目的,出现在PC显示器上的接口原型必须采用C、C++或者其它适用于嵌入式开发的语言来控制。对于其它部分,则可以假设C是用于最终目标硬件的语言。
然后大概考虑一下需要仿真的是哪部分软件。在最简单的情况下,软件可用来打开或关闭一个LED,或者向一个小型字符显示器输出一个字符串。控制人机界面上的物理元件只是一项很普通的功能,所以能够在PC机上编写这种软件的优点是微不足道的。因为开关一个LED可能只需要一行代码,在一个LCD文本显示器上显示一个文本字符串也只需要调用一个10行或20行的函数。
真正困难的是如何编写软件来决定究竟是打开LED还是关闭LED,以及决定显示什么字符串。例如,当一个被测传感器的值持续超过警戒线一段时间,而一组使警戒有效的条件也满足了之后,软件也许应选择打开LED。再如,当用户按下一个按钮来选择菜单中的下一项时,软件也许应查阅一个描述该菜单的字符串表和操作表,以决定下一个显示的应该是哪一项。这种控制菜单之类的软件,其代码长度就会超过底层软件。
在本例中,我们的目的是编写一个文本显示和LED控制的仿真软件,以表示PC机屏幕的变化。我们可以编写警戒检查代码和菜单控制代码,使其既能运行在PC机上,又能运行在目标设备上。
这种仿真的方法并不新颖。但在为诸如PDA和游戏机之类并没有自己的开发环境的目标设备上编写软件时,通常需要用到这种方法。
编写仿真软件所需的工具
用Visual Basic在PC机上显示几个按钮和两行文本并不困难,但当将该原型与C代码接口时,就会显得十分麻烦。
如今有许多针对嵌入式开发的原型编写工具,用这些工具往往会迫使设计工程师依赖于它们的事件模型,从而导致设计过多地依赖这些工具。如果设计工程师遵从它们的接口设计风格,那么这些工具确实可以产生代码,但它们并不是对所有平台都具备足够的灵活度,而且它们产生的代码可能并不适合小型的微控制器。
我所采用的工具是Borland C++(后面将简写为CPB)。Borland C++并不是专门配合嵌入式系统的软件编写工具,但我发现它非常适合设计的需要,而且采用Borland C++不会将设计束缚在任何一个处理器或者任何一种软件结构上。
CPB中有一组预定义的图形组件,其中大多数并非针对嵌入式项目,而是针对桌面应用(类似下拉菜单)。但还是有一个小的子组件可用于我们本文所述的目的。象LED这样的UI元素就可以用图像来仿真。
CPB有三种版本:标准版、专业版和企业版。对于我们将要讨论的接口而言,标准版已经足够。
按钮、滑动块、标签和其它UI元素均可通过drag-and-drop环境插入一个表格(一个简单的对话窗口)中去。产生一个这样的表格就会生成一个C++类的框架。例如,每当用户点击一个图像或移动一个滑动块时,都会产生一组事件,而该表格中的每个元素都有这样一组事件与其对应。究竟需要对哪些事件作出反映则由程序员来选择。这些响应就被写成该表格所产生的类的成员函数。
如果前面板是由一个工业设计小组设计的,那么就会有整个显示图像可供利用。或者如果物理原型已经存在,那么一幅该物理原型的数字相片就可以用来作为背景。
我采用图像目标(在CPB内也叫作Timage)来显示大多数物理元件。因为采用了图像目标就可以引入位图,然后进行显示。例如可以引入一个发光二极管的图像。在该应用中,显示了一个包含5个按钮和4个LED的接口原图,如图1所示。背景图像中LED处于关断状态。一旦软件决定其中的一个LED应打开,那么这个发光LED图像的可见属性就被设为真,于是点亮的LED的图像就覆盖了不亮的LED图像。
有了这种简单的重叠多幅图像的诀窍,我们就可以仿真一个物理显示屏的其它部分。例如,假设我们采用CPB IDE来创建一个包含单词“ALARM”的标注,并将这一元素命名为AlarmIndicator,那么我们就可以编写一个函数来控制它:
void setAlarmState(Boolean state)
{
PanelForm->AlarmIndicator
->Visible = state;
}
面板表格中包含了我们仿真时所用到的所有图形对象。Alarm-Indicator就是我们将一个标签放到面板表格上之后为其分配的名字。当我们将该标签通过拖拽到表格窗口中的方式加入该表格时,它就成为了该表格的一个数据成员。
在CPB中,显示屏上的一个元素的所有属性都可以作为表征该元素的类的公共数据成员。因此,Visible属性只需进行一个简单的分配操作就能改变。公共数据成员可以在程序中的任何地方通过分配而改变。在CPB中,各属性也有其特殊状态,允许在IDE中通过该状态改变属性。开发者可以点击一个标注,并在属性窗口设置Visible属性。显示的颜色和字体也可以通过类似的方法改变。
现在来看一个setAlarmState()程序,该程序用于驱动基于CPB的仿真。以下代码为CPB专用代码,在最终的目标上无法运行。不用多久,我们将不得不为目标接口编写该函数的另一个版本,形式如下:
void setAlarmState(Boolean state)
{
if (state)
{
ledRegister |= 0x02;
}
else
{
ledRegister &= ~0x02;
}
}
有时,编程的风格会导致一些小函数造成函数调用开销。在较小的系统中这一问题较受关注,而这些函数中有一些可以写成宏或者内联(inline)函数。我通常只在项目的最后阶段才开始进行这类优化。
代码的组织
如果我们已经编写了两个版本的setAlarm-State()函数,那么我们必须保证一次只编译其中的一个。要达到这一目的,一种方法是一直采用CPB代码,直到目标硬件设计好之后,再用目标专用的代码代替其中所有CPB专用的代码。如果我们这样做,那么在我们开始目标硬件的开发工作之后,就无法再运行仿真了。读者可能认为这不是什么问题,但事实上,即使硬件设计好之后,仿真也是有用的。
例如,仿真中基于PC的调试环境往往就比目标硬件的开发环境要好。因为目标硬件的下载速度可能较慢,或者每次修改软件都必须重新烧录一块一次性可编程芯片。而且目标硬件的调试环境中可能也不支持单步调试和断点调试。即使目标硬件的调试环境较好,相对而言,PC仿真还是有其它优势。开发者可以将.exe文件通过电子邮件发送给不在同一工作地点的工作伙伴,以获得他们的反馈信息。
一旦开发者决定要在整个项目的开发周期中同时保留两个版本的函数,那么分隔它们就很容易。在CPB中的Project/Options下,可以定义宏。我通常会定义USING_CPB,然后在我的源代码中,利用一个#ifdef来区分不同的函数版本。另一种区分函数版本的方法就是将目标代码和仿真代码存放在不同的文件中,但让二者共享同一个头文件,以保证二者采用同样一组函数标记。
CPB环境是基于C++的一种环境,但许多嵌入式目标几乎都不支持C。这时,开发者只能采用共享代码中由交叉编译器所支持的C++子集,这其实并没有想象中的困难。解决该问题的方法之一就是针对嵌入式目标来编译代码,即使当前并没有硬件可以运行这些代码。这时那些在PC机上可用的而在目标硬件上则可能属于非法的特性就显得突出起来。例如,有些较小型的处理器就不支持递归。同时,在嵌入式编译器上检查软件,还能快速地在程序中标出那些偶然被包含进目标可执行文件中的CPB专用代码。我本人就发觉这种方法在跟踪软件的大小时非常有用,因为CPB库过于庞大,会完全扭曲程序的大小,所以PC机中进行编译时给出的软件大小并不真实。
这里采用了三种类型的代码。其中有些属于CPB专用代码,只能在PC机上编译;有些属于目标专用代码,只能在目标上编译;而其它的则属于公共代码,应该既能在PC机平台上运行,也能在目标平台上运行。在理想情况下,每个源文件应该都只包含一种类型的代码。设计工程师的IDE或makefile应允许其选择在每次创建可执行文件时需要包含哪些文件。
建议在命名文件时,将所有CPB专用的文件命名为.cpp文件,所有目标专用的文件和共享文件均取.c为扩展名。那么在目标环境中编译时,就只需编译扩展名为.c的文件,而不编译扩展名为.cpp的文件。
如果设计工程师遵循以上风格,那么在CPB环境中编译时还会遇到一个问题。CPB环境将.c文件假设为C代码编写的文件,而将.cpp文件假设为C++代码编写的文件。当从一个文件到另一个文件发生调用时,将会因 C++产生破损函数名的方式不同而产生链接错误。我们可以通过采用“extern C”构造来回避这个问题。但这样有点麻烦,尤其当调用发生在从C到C++或从C++到C时。可以为Borland编译器设置一个标志,告诉它,不论文件名的后缀是什么,均将其作为C++文件来编译。遗憾的是IDE中没有这样的标志。于是我们只能手工编辑项目配置文件来实现这一功能。
代码举例
读者可以在www.panelsoft.com/cpb 处找到一个可执行文件five.exe,文件中包含一行5个按钮和一组LED。按下前4个按钮中的任何一个都会打开相应的一个LED。第5个按钮是RESET(复位)按钮,按下该按钮会关断所有LED。 当然,在构造这样一个项目时,并不需要进行仿真。但该例旨在说明,只要具备初始的接口界面图象,那么仿真时,只需稍作努力就可得到与真实设备看起来相似的运行结果。同时,该例还说明,key.c模块中包含的代码既可在目标环境中运行,也可在仿真环境中运行,而且该代码不会因目标环境和仿真环境这两种平台之间的差异而需要任何条件代码才能运行。用于构造该应用的所有源代码和初始位图均可从该站点下载。
建立类似的仿真需要设计工程师具备一定的C++知识,学习CPB开发环境也需要一定的过程,当设计工程师从未用过这种面向对象的事件驱动环境时尤其如此。然而只要建立起一个仿真,那么其它工作只需按相同的步骤进行即可。设计工程师如果曾编写过基于PC的程序,而且程序中用到了GUI,那么这一经验会有助于对CPB的学习。我过去就曾利用这样一个程序来完成过一个简单的下载应用,实现与嵌入式目标的串行通信。
关键字:人机界面 嵌入式系统 原型设计
引用地址:嵌入式系统的人机界面原型设计策略
构建一个人机界面原型能够帮助设计工程师在设计早期理解接口对设计的要求和接口的可用性。下面将探讨一种当目标硬件还远未实现时,在PC机上构建人机界面原型的方法。构建这类原型的主要目的有二。
1. 使同一个设计组中的其他成员能够看到该设备的工作过程。当我们在纸上设计一台交互式设备时,要判断设计中所描述的交互性能否实际实现,需要很大的想象力。而如果构建一个工作原型,就会使情况清晰许多,并且允许更多的旁观者来评论正在计划中的接口设计得怎样。很多时候,用接口原型进行试验,还能帮助设计工程师决定真正设计出的硬件需要多少按钮、多少LED、多少数字显示器或文本显示器。
2. 当硬件没有工作时,利用接口原型来为人机界面编写软件。为达到这一目的,出现在PC显示器上的接口原型必须采用C、C++或者其它适用于嵌入式开发的语言来控制。对于其它部分,则可以假设C是用于最终目标硬件的语言。
然后大概考虑一下需要仿真的是哪部分软件。在最简单的情况下,软件可用来打开或关闭一个LED,或者向一个小型字符显示器输出一个字符串。控制人机界面上的物理元件只是一项很普通的功能,所以能够在PC机上编写这种软件的优点是微不足道的。因为开关一个LED可能只需要一行代码,在一个LCD文本显示器上显示一个文本字符串也只需要调用一个10行或20行的函数。
真正困难的是如何编写软件来决定究竟是打开LED还是关闭LED,以及决定显示什么字符串。例如,当一个被测传感器的值持续超过警戒线一段时间,而一组使警戒有效的条件也满足了之后,软件也许应选择打开LED。再如,当用户按下一个按钮来选择菜单中的下一项时,软件也许应查阅一个描述该菜单的字符串表和操作表,以决定下一个显示的应该是哪一项。这种控制菜单之类的软件,其代码长度就会超过底层软件。
在本例中,我们的目的是编写一个文本显示和LED控制的仿真软件,以表示PC机屏幕的变化。我们可以编写警戒检查代码和菜单控制代码,使其既能运行在PC机上,又能运行在目标设备上。
这种仿真的方法并不新颖。但在为诸如PDA和游戏机之类并没有自己的开发环境的目标设备上编写软件时,通常需要用到这种方法。
编写仿真软件所需的工具
用Visual Basic在PC机上显示几个按钮和两行文本并不困难,但当将该原型与C代码接口时,就会显得十分麻烦。
如今有许多针对嵌入式开发的原型编写工具,用这些工具往往会迫使设计工程师依赖于它们的事件模型,从而导致设计过多地依赖这些工具。如果设计工程师遵从它们的接口设计风格,那么这些工具确实可以产生代码,但它们并不是对所有平台都具备足够的灵活度,而且它们产生的代码可能并不适合小型的微控制器。
我所采用的工具是Borland C++(后面将简写为CPB)。Borland C++并不是专门配合嵌入式系统的软件编写工具,但我发现它非常适合设计的需要,而且采用Borland C++不会将设计束缚在任何一个处理器或者任何一种软件结构上。
CPB中有一组预定义的图形组件,其中大多数并非针对嵌入式项目,而是针对桌面应用(类似下拉菜单)。但还是有一个小的子组件可用于我们本文所述的目的。象LED这样的UI元素就可以用图像来仿真。
CPB有三种版本:标准版、专业版和企业版。对于我们将要讨论的接口而言,标准版已经足够。
按钮、滑动块、标签和其它UI元素均可通过drag-and-drop环境插入一个表格(一个简单的对话窗口)中去。产生一个这样的表格就会生成一个C++类的框架。例如,每当用户点击一个图像或移动一个滑动块时,都会产生一组事件,而该表格中的每个元素都有这样一组事件与其对应。究竟需要对哪些事件作出反映则由程序员来选择。这些响应就被写成该表格所产生的类的成员函数。
如果前面板是由一个工业设计小组设计的,那么就会有整个显示图像可供利用。或者如果物理原型已经存在,那么一幅该物理原型的数字相片就可以用来作为背景。
我采用图像目标(在CPB内也叫作Timage)来显示大多数物理元件。因为采用了图像目标就可以引入位图,然后进行显示。例如可以引入一个发光二极管的图像。在该应用中,显示了一个包含5个按钮和4个LED的接口原图,如图1所示。背景图像中LED处于关断状态。一旦软件决定其中的一个LED应打开,那么这个发光LED图像的可见属性就被设为真,于是点亮的LED的图像就覆盖了不亮的LED图像。
有了这种简单的重叠多幅图像的诀窍,我们就可以仿真一个物理显示屏的其它部分。例如,假设我们采用CPB IDE来创建一个包含单词“ALARM”的标注,并将这一元素命名为AlarmIndicator,那么我们就可以编写一个函数来控制它:
void setAlarmState(Boolean state)
{
PanelForm->AlarmIndicator
->Visible = state;
}
面板表格中包含了我们仿真时所用到的所有图形对象。Alarm-Indicator就是我们将一个标签放到面板表格上之后为其分配的名字。当我们将该标签通过拖拽到表格窗口中的方式加入该表格时,它就成为了该表格的一个数据成员。
在CPB中,显示屏上的一个元素的所有属性都可以作为表征该元素的类的公共数据成员。因此,Visible属性只需进行一个简单的分配操作就能改变。公共数据成员可以在程序中的任何地方通过分配而改变。在CPB中,各属性也有其特殊状态,允许在IDE中通过该状态改变属性。开发者可以点击一个标注,并在属性窗口设置Visible属性。显示的颜色和字体也可以通过类似的方法改变。
现在来看一个setAlarmState()程序,该程序用于驱动基于CPB的仿真。以下代码为CPB专用代码,在最终的目标上无法运行。不用多久,我们将不得不为目标接口编写该函数的另一个版本,形式如下:
void setAlarmState(Boolean state)
{
if (state)
{
ledRegister |= 0x02;
}
else
{
ledRegister &= ~0x02;
}
}
有时,编程的风格会导致一些小函数造成函数调用开销。在较小的系统中这一问题较受关注,而这些函数中有一些可以写成宏或者内联(inline)函数。我通常只在项目的最后阶段才开始进行这类优化。
代码的组织
如果我们已经编写了两个版本的setAlarm-State()函数,那么我们必须保证一次只编译其中的一个。要达到这一目的,一种方法是一直采用CPB代码,直到目标硬件设计好之后,再用目标专用的代码代替其中所有CPB专用的代码。如果我们这样做,那么在我们开始目标硬件的开发工作之后,就无法再运行仿真了。读者可能认为这不是什么问题,但事实上,即使硬件设计好之后,仿真也是有用的。
例如,仿真中基于PC的调试环境往往就比目标硬件的开发环境要好。因为目标硬件的下载速度可能较慢,或者每次修改软件都必须重新烧录一块一次性可编程芯片。而且目标硬件的调试环境中可能也不支持单步调试和断点调试。即使目标硬件的调试环境较好,相对而言,PC仿真还是有其它优势。开发者可以将.exe文件通过电子邮件发送给不在同一工作地点的工作伙伴,以获得他们的反馈信息。
一旦开发者决定要在整个项目的开发周期中同时保留两个版本的函数,那么分隔它们就很容易。在CPB中的Project/Options下,可以定义宏。我通常会定义USING_CPB,然后在我的源代码中,利用一个#ifdef来区分不同的函数版本。另一种区分函数版本的方法就是将目标代码和仿真代码存放在不同的文件中,但让二者共享同一个头文件,以保证二者采用同样一组函数标记。
CPB环境是基于C++的一种环境,但许多嵌入式目标几乎都不支持C。这时,开发者只能采用共享代码中由交叉编译器所支持的C++子集,这其实并没有想象中的困难。解决该问题的方法之一就是针对嵌入式目标来编译代码,即使当前并没有硬件可以运行这些代码。这时那些在PC机上可用的而在目标硬件上则可能属于非法的特性就显得突出起来。例如,有些较小型的处理器就不支持递归。同时,在嵌入式编译器上检查软件,还能快速地在程序中标出那些偶然被包含进目标可执行文件中的CPB专用代码。我本人就发觉这种方法在跟踪软件的大小时非常有用,因为CPB库过于庞大,会完全扭曲程序的大小,所以PC机中进行编译时给出的软件大小并不真实。
这里采用了三种类型的代码。其中有些属于CPB专用代码,只能在PC机上编译;有些属于目标专用代码,只能在目标上编译;而其它的则属于公共代码,应该既能在PC机平台上运行,也能在目标平台上运行。在理想情况下,每个源文件应该都只包含一种类型的代码。设计工程师的IDE或makefile应允许其选择在每次创建可执行文件时需要包含哪些文件。
建议在命名文件时,将所有CPB专用的文件命名为.cpp文件,所有目标专用的文件和共享文件均取.c为扩展名。那么在目标环境中编译时,就只需编译扩展名为.c的文件,而不编译扩展名为.cpp的文件。
如果设计工程师遵循以上风格,那么在CPB环境中编译时还会遇到一个问题。CPB环境将.c文件假设为C代码编写的文件,而将.cpp文件假设为C++代码编写的文件。当从一个文件到另一个文件发生调用时,将会因 C++产生破损函数名的方式不同而产生链接错误。我们可以通过采用“extern C”构造来回避这个问题。但这样有点麻烦,尤其当调用发生在从C到C++或从C++到C时。可以为Borland编译器设置一个标志,告诉它,不论文件名的后缀是什么,均将其作为C++文件来编译。遗憾的是IDE中没有这样的标志。于是我们只能手工编辑项目配置文件来实现这一功能。
代码举例
读者可以在www.panelsoft.com/cpb 处找到一个可执行文件five.exe,文件中包含一行5个按钮和一组LED。按下前4个按钮中的任何一个都会打开相应的一个LED。第5个按钮是RESET(复位)按钮,按下该按钮会关断所有LED。 当然,在构造这样一个项目时,并不需要进行仿真。但该例旨在说明,只要具备初始的接口界面图象,那么仿真时,只需稍作努力就可得到与真实设备看起来相似的运行结果。同时,该例还说明,key.c模块中包含的代码既可在目标环境中运行,也可在仿真环境中运行,而且该代码不会因目标环境和仿真环境这两种平台之间的差异而需要任何条件代码才能运行。用于构造该应用的所有源代码和初始位图均可从该站点下载。
建立类似的仿真需要设计工程师具备一定的C++知识,学习CPB开发环境也需要一定的过程,当设计工程师从未用过这种面向对象的事件驱动环境时尤其如此。然而只要建立起一个仿真,那么其它工作只需按相同的步骤进行即可。设计工程师如果曾编写过基于PC的程序,而且程序中用到了GUI,那么这一经验会有助于对CPB的学习。我过去就曾利用这样一个程序来完成过一个简单的下载应用,实现与嵌入式目标的串行通信。
上一篇:开源式OLED手表
下一篇:CSR VibeHub™网络音频平台助力Audivo
推荐阅读最新更新时间:2024-05-02 23:08
嵌入式系统的以太网接口设计及linux驱动
以太网概述 以太网(Ethernet)是当今局域网采用的最通用的通信协议标准。在以太网中,所有计算机被连接在一条电缆上,采用带冲突检测的载波侦听多路访问(CSMA/CD)方法,采用竞争机制和总线拓扑结构。基本上,以太网由共享传输媒体,如双绞线电缆或同轴电缆、多端口集线器、网桥或交换机构成。
按照OSI(Open System Interconnection Reference Model,开放式系统互联参考模型)7层参考模型,以太网定义的是物理层(PHY)和数据链路层(对应以太网的MAC层)的标准。
2 嵌入式处理器上扩展以太网接口
以太网接口控制器主要包括MAC乘PHY两部分,如图1所示为嵌入式处理
[嵌入式]
基于μc/OS-II的多传感器测控系统研究
1 引言
随着嵌入式系统的广泛应用,原来单一传感器的嵌入式系统逐渐向嵌入式多传感器系统发展。由此提出了多传感器任务调度分配的问题。本文结合红薯保鲜储藏工程涉及到的温度湿度氧浓度等参数要求,采用高性能16位单片机SPCE061A作为控制芯片,移植可裁剪的多任务实时操作系统μc/OS-II管理多任务的处理,选用高精度温度传感器DS18B20、湿度传感器HIH3605、氧浓度传感器DW-02构建了一个高精度高性能高可靠性的多传感器嵌入式测控系统,各个被控参数可调范围宽,较好的满足了工程要求。系统的主要参数:工作温度:10~14℃±0.5℃;工作湿度:80~95%RH±5%;氧浓度:≮4.5%。同时,实现了温湿度数据的显示与保
[嵌入式]
PLC工控组态软件有哪些?
01 组态软件:一般英文简称有三种分别为HMI/MMI/SCADA,对应全称为Human and Machine Interface、Man and Machine Interface 、Supervisory Control and Data Acquisition,中文翻译为:人机界面、监视控制和数据采集软件。 目前组态软件的发展迅猛,已经扩展到企业信息管理系统,管理和控制一体化,远程诊断和维护以及在互联网上的一系列的数据整合。 组态软件的应用领域很广,它可以应用于电力系统、给水系统、石油、化工等领域的数据采集与监视控制以及过程控制等诸多领域。在电力系统以及电气化铁道上又称远动系统(RTU System Remote Te
[嵌入式]
嵌入式系统的实时性问题
摘要:嵌入式系统是嵌入到对象体系中的计算机应用系统,与对象系统交互,在实现对象系统某些任务过程时,对应用系统会提出响应时间的限定要求。由于应用系统中软件运行的时间耗费,常常不能满足限定的时间响应要求,由此而产生了嵌入式应用系统的实时性问题。本文粗浅地归纳嵌入式应用系统实时性的诸多问题,希望引起大家关注。
关键词:嵌入式系统 实时性 快速性 操作系统
随着后PC时代以及网络、通信技术时代的到来,大量的计算机专业人员进入了嵌入式应用领域;然而,有大量的嵌入式系统应用是以单片机的形式,应用在传统的电子技术领域中。因此,以计算机领域人员为主体的,远离对象系统的嵌入式系统的计算机工程应用模式,和以电子技术领域人员为主体,与对象系统紧耦
[嵌入式]
中国通信网评论:核心不是问题 关键在于体验
目前用户感受最为直接的人机界面切换的流畅度以及触摸控制的爽滑度等问题,其直接的决定力量也并非硬件的性能指标而是软件系统的优化程度。 周一开幕的2012年世界移动通信大会(以下简称MWC)比年初的CES显然更加激动人心,一大堆重量级的移动互联终端粉墨登场。尤其是把控目前智能手机、平板电脑上游芯片领域的德州仪器、高通和三星等集体发力,再加上新贵华为的强力奉献,一场有关移动互联终端的多核大战正式引爆。就目前各大芯片巨头联手推出的产品状况来看,2012年双核将会成为智能手机、平板电脑的主流配置,而四核将会占据旗舰地位,而且根据企业的计划,相关产品将会从今年二季度陆续上市,到年底完成市场主流的基本切换。对此,部分3C技术发烧友当然满心期待
[手机便携]
ARM嵌入式系统应用中的问题总结分析
引言 由于各种新型微处理器的出现和应用的不断深化,嵌入式系统在后PC时代得到了空前的发展。随着时间的推移和技术的进步,在工业控制和新兴的手持式应用等领域,用户体验成为产品成功的关键因素之一,越来越多的产品需要良好的用户界面、互联功能以及较强的数据处理能力,这对嵌入式处理器硬件、软件、教学等提出了新的要求。 1嵌入式处理器与硬件 在处理器方面,目前大量的中、低端嵌入式应用,主要使用8/16位单片机。在国内,由于历史的原因,主要是以MCS51核为主的许多不同型号单片机,主要厂商有Atmel、Philips、Winbond、宏晶等。还有一些近几年发展较快的新型单片机,如PIC、AVR、MSP430系列等。这些单片机各有特点,
[单片机]
红外通讯协议在嵌入式系统中的实现
摘要:从红外通讯协议的特点、基本原理对红外无线通信技术进行了分析,结合实际例程探讨了红外数据通信在嵌入式系统中的基本设计要点。
关键词:红外通讯协议 嵌入式系统 异步通信收发器 状态机
红外和蓝牙协议是两种较流行的短距离无线通信协议。但目前蓝牙协议各大厂商尚未有一个统一的标准规范,加之硬件价格较为昂贵的缺点,因此市场上红外通信在手机、笔记本电脑等小型移动设备中仍然应用广泛,在嵌入式系统中的实际应用有着较高实际意义。
1 红外协议背景
红外线是波长在750nm至1mm之间的电磁波,其频率高于微波而低于可见光,是一种人的眼眼看不到的光线。目前无线电波和微波已被广泛应用在长距离的无线通信中,但由于红外线的波长较短,对障碍物的衍
[工业控制]
基于嵌入式系统的负压吸引器设计
为了稳定精确地将病人术后腹腔内积累的各种脏器分泌液排出体外,提出一种基于嵌入式系统的负压吸引器。该系统采用气压 传感器 、重力感应器、PH值传感器、电磁阀和薄膜泵等模块,通过检测病人体内的腔压来调整负压实现体液的引流,并能实时监控病人排出液的各项参数。经过测试,该系统能动态控制负压引流并精确测量排出体液的参数,具有稳定可靠的特性。 由于很多病人手术后脏器创口没有得到有效的愈合,此时会在腹腔内积累各种液体。最为常见的就是在临床中,为了保证肠道患者在术后能尽快康复,就需要将来自胃的低PH值的消化液借助引流设备排出体外。目前国内外市场上通常使用一次性负压吸引袋或机械式吸引器将体液引流至体外。但是这种方法产生的负压并不稳定,吸引的
[单片机]