单频可调光纤激光器的应用

发布者:小九分析仪最新更新时间:2015-05-13 来源: eechina关键字:光纤激光  单频可调  激光器 手机看文章 扫描二维码
随时随地手机看文章
  单频光纤激光器具有线宽超窄、频率可调、相干长度超长以及噪声超低等独特性能,借用微波雷达上的FMCW技术可对超远距离的目标进行超高精度的相干探测,从而会改变市场对光纤传感、激光雷达和激光测距等固有观念,继续把激光器应用革命进行到底。NPPhotonics提供的单频光纤激光器可以十分低地成本解决激光光束质量和激光功率的矛盾,从而研制出了该款极具竞争优势的单频可调光纤激光器。
  NP光纤激光器的特点
  NP提供的1550nm光纤激光器最大的特点就是线宽超窄至2Khz,频率稳定性好于10Mhz,具有超长相干长度和超低噪声,就是比世界上最好的DFB激光器都高出2个数量级。该款激光器输出功率可达150mW,边模抑制比高于50dB,热调协范围20Ghz,同时兼备50Mhz/V的线性PZT调制功能。
  核心技术
  请见图1为NP激光器的结构图,激光器腔由左右两端的光纤光栅和中间极短的有源光纤组成。该设计方案充分利用了我们美国合作方的专利技术,高浓度、铒/镱离子共掺有源光纤可以确保激光器的腔长度少于5cm,这是传统光纤技术所不可能完成的任务!

 


图1  激光器结构


  如此短的腔长极合适超高稳定性和跳模自由的单频激光工作。该种激光器的线宽典型值为2Khz,而且都是线偏光输出。结构紧凑和高稳定性能的光纤激光器就可以在如此短的激光腔基础上完成制作。
  在光纤传感中的应用
  NP的超窄线宽光纤激光器可以应用于分布式光纤传感系统,对远至10公里的目标进行探测、定位和分类。它的基本应用原理就是频率调制连续波技术(FMCW),该技术能为核电站,石油/天然气管道,军事基地以及国防边界提供低成本的、全分布式的传感安全保护。
  在FMCW技术中,激光输出频率围绕它的中心频率不断变化,而激光的一部分光被耦合进一个有固定反射率的参考臂中,在外差相干探测系统中,该参考臂就充当了一个本地振荡器(LO)的作用。充当传感作用的是另一跟很长的光纤,请见图2。

 


图2   PMCW 技术原理图


  从传感光纤反射回来的激光与来自本地振荡器的参考光一起混合产生一个光拍频,该频率与它所经历的时间延迟差相对应。传感光纤上的远处信息就可以通过测量光谱分析仪上的光电流的拍频来获取。传感光纤上的分布式反射可以是最简单的瑞利后向散射。通过这种相干探测技术,敏感度低至-100db的信号都能很轻易地探测到。
  同时,既然光电流的拍频信号是与反射回来的光信号和来自本地振荡器的参考光的功率成正比,而且参考光还有放大信号光的功能,所以这种传感技术可以实现目前其他任何光纤传感技术所不能达到的超远距离的动态测量。外部对传感光纤干扰的因素,比如压力、温度、声音和振动都会直接影响反射回来的激光,从而实现对这些外部环境的探测。
  然而对于任何一套相干FMCW技术系统而言,最关键的部分是要一台相干长度很长的光源来实现很高的空间精度和大的测量范围。配备NP的光纤激光器,最长的传感距离可超过10公里,而市场上的DFB激光二极管的探测距离却只有数百米。由于只要配备一台这样的激光器和光电探测器就可以监控超远距离的传感部位的变化,所以该传感系统能够以很低的成本升级目前的安保标准,从而可广泛应用于在大范围、远距离的国土安全和军事领域。
  激光指示和军事测距
  目前军方的ISR(情报、监视、侦察)综合平台通常装备的是光电成像系统,它一般都能远距离成像和精确定位小目标的移动,比如运载火箭和坦克。可是,由于受成像系统的地形精度的影响,该系统一般都无法传递目标的精准位置给这些指挥平台指引武器对准目标。军方其实一直在ISR系统方面存在对低成本的、超远距离的(几百公里)、超高精度的(1米以下)激光目标指示/测距的巨大需求。
  目前一般的商业激光测距仪的测量距离最远为10-20公里,这受限于它的动态范围和测量敏感度,无法满足军方ISR系统需求。目前绝大多数的激光测距仪都是基于脉冲激光的光时域反射原理,它们由快速光电探测器和简单的分析仪组成,直接探测从目标反射回来的光脉冲信号,测量精度通常为1-10米,这受限于激光的脉冲宽度(相对3-30nm长激光脉冲)。激光脉冲越短,测量精度就越高,同时激光测量的带宽也就要大大提高。这无疑会增大探测的噪声,从而降低动态测量距离。由于光电流信号是成线性正比于反射回来的光信号能量,所以这些增强的噪声就限制探测信号的敏感度。正是因为如此,目前军用的激光测距仪最长的测量距离只有10-20公里。

 


  图3  FMCW技术在激光测距上的应用


  基于FMCW技术原理,NP提供的1550nm超窄线宽光纤激光器能够广泛应用于几百公里的激光目标指示和激光测距,从而可以十分低成本地搭建ISR平台。一套超远距离的激光指示/测距由激光器、准直器和接收器、信Δf号分析仪组成(请见图3)。窄线宽激光器的频率成线性快速调制。通过测量从目标处反射回来的的信号光与参考光一起混频产生光电流便可获取远处的信息。在FMCW技术系统中,激光器的线宽或相干长度决定了测量的距离和敏感度。线宽低至2Khz的光纤激光器,要比世界上最好的半导体激光器的线宽低2-3个数量级。这个重要的特点可以实现几百公里的激光指示和测距,而精度高达1米甚至1米以下。
  采用这种光纤激光器做成的激光指示/测量仪要比目前绝大多数的基于脉冲激光的激光指示/测量仪拥有诸多优势,这包括非常长的动态距离,非常高的测量敏感度,对人眼安全,体形小重量轻,稳定牢固以及容易安装等等。
  多普勒激光雷达
  一般而言,相干雷达系统要求脉冲激光光源,而且为了能产生外差或零差信号做多普勒传感,这些激光器还必须是单频工作。然而传统概念上,这种激光器一般都由子激光器、主激光器和复杂的电路控制三部分组成。其中子激光器是一个高功率的脉冲激光振荡器,主激光器是一个低功率的却十分稳定的连续激光器,而电控部则主要是用来控制和维持子激光器能单频振荡。毫无疑问,这种传统的单频脉冲激光器体积过于庞大,而且在耐用性和牢固性方面面临很大的挑战而无法走向规模化,因为它需要经常很麻烦地对各敏感分立光学部件进行校准,同时还要匹配好来自主激光器的种子信号能顺利耦合进子激光器里。
  NP的单频、全光纤化的调Q脉冲光纤激光器可以满足超强紧凑型的多普勒激光雷达系统。这种新颖的激光器既可以配合一台本地振荡器单独工作,也可以频率锁定做脉冲运转,还可以通过本地振荡器作为注入激光种子源。反射回来的多普勒频移能够十分容易地通过检验参考光与信号光混频所产生的光电流来读取。由于光纤天然的波导结构,光纤激光器根本不需要光学对准和调整。同时除非通过复杂的非线性频率转换,目前的晶体固态激光器一般都无法直接输出对人眼安全的1550nm波长,这使得掺铒光纤激光器更具吸引力,从而成为激光雷达的最好光源之一。
关键字:光纤激光  单频可调  激光器 引用地址:单频可调光纤激光器的应用

上一篇:基于NI VeriStand和JMAG-RT进行高性能电机仿真
下一篇:基于PLC的远程访问的应用

推荐阅读最新更新时间:2024-05-02 23:41

安泰高精度电压源在半导体激光器测试中的应用
半导体激光器是光纤通讯,激光显示,气体探测等领域中的核心部件,受到全世界科技人员的广泛关注。在半导体激光器的生产、研发过程中,对激光器的光电特性的测量尤为重要,是控制激光器制备工艺的稳定性,激光器性能可靠性的关键环节。 半导体激光器是半导体光电转换器件。如图1所示,半导体激光器由多层材料构成。自下而上包括背电极,衬底,下光限制层,下波导层,有源层,上波导层,上限制层,上电极。不同层由不同的外延材料组成。如此层状结构是为了达到(1)载流子(电子,空穴)的注入复合发光,(2)光子横向限制,形成光波导的目的。外延完成的层状结构要经过刻蚀工艺,形成脊波导,在脊波导上制备接触电极。 如此脊波导的目的:(1)限制电流侧向扩散,(2)形
[测试测量]
安泰高精度电压源在半导体<font color='red'>激光器</font>测试中的应用
准分子激光器提升Micro-LED制造工艺
导读: 于无机 III-V 半导体(例如 GaN)的 Micro-LED (μLED) 可用于制造电效率、亮度、像素密度、使用寿命和应用范围远超现有技术的显示屏,前景可观。     于无机 III-V 半导体(例如 GaN)的 Micro-LED (μLED) 可用于制造电效率、亮度、像素密度、使用寿命和应用范围远超现有技术的显示屏,前景可观。然而,要实现从当前 LED 器件(约 200 μm)到 μLED(约 20 μm)的过渡,必须有技术创新的支撑,尤其是实现 μLED 显示屏组装方面的创新。本文将介绍如何通过准分子激光器解决此加工过程中最为棘手的两个难题。     激光剥离技术 (LLO)     由于蓝宝石晶片的晶格失配度
[电源管理]
首个气流调谐液滴激光器出现,有望催生更便宜光纤通信设备
荷叶沾水珠而不湿,日本科学家借助这一“荷叶效应”,利用简单的方法,制造出了一种新型离子液滴,这种微滴可用作灵活、持久而可调谐的激光器。与现有不能在大气中工作的“液滴激光器”不同,最新进展有望使激光器在日常环境中使用,从而催生出更便宜的光纤通信设备。相关研究刊发于最近的《激光与光子学评论》杂志。 图片来源:物理学家组织网 荷叶具有显著的自洁特性,在荷叶表面,水滴不会变平,而是会形成近乎完美的球体并滚落,带走灰尘。这种“荷叶效应”由叶片内的微小突起造成。 在最新研究中,筑波大学科学家利用人工“荷叶效应”,创造出了可以像激光一样工作的液滴,而且,这种液滴激光器可在长达一个月的时间里保持稳定,而目前的“液滴激光器”不能在开
[网络通信]
首个气流调谐液滴<font color='red'>激光器</font>出现,有望催生更便宜<font color='red'>光纤</font>通信设备
迄今世界最强激光器启动
世界上最强大的激光器于近日被激活。物理学家组织网3月31日报道,该系统能使激光脉冲在1飞秒(1000万亿分之一秒)内达到10拍瓦(1拍瓦=1000万亿瓦=1015瓦)的峰值,有望促进从医学到基础物理以及太空等多个领域取得革命性进展。 位于罗马尼亚研究中心的迄今最强激光器。 图片来源:物理学家组织网 该激光器所属高科技中心位于罗马尼亚,主要由欧盟资助,耗资3.2亿欧元,利用了法国科学家热拉尔·穆鲁等人的发明。 科学家一直致力于制造更强大的激光器。20世纪80年代中期,穆鲁团队发明了啁啾脉冲放大技术(CPA),能在保证激光强度的同时提升其功率。其工作原理是在时间上拉伸超短激光脉冲,将其放大,然后再次将其挤压在一起,以此创造出迄今
[医疗电子]
迄今世界最强<font color='red'>激光器</font>启动
基于单片机的半导体激光器电源控制系统的设计
      半导体激光器(LD)体积小,重量轻,转换效率高,省电,并且可以直接调制。基于他的多种优点,现已在科研、工业、军事、医疗等领域得到了日益广泛的应用,同时其驱动电源的问题也更加受到人们的重视。使用单片机对激光器驱动电源的程序化控制,不仅能够有效地实现上述功能,而且可提高整机的自动化程度。同时为激光器驱动电源性能的提高和扩展提供了有利条件。 1 总体结构框图       本系统原理如图1所示,主要实现电流源驱动及保护、光功率反馈控制、恒温控制、错误报警及键盘显示等功能,整个系统由单片机控制。本系统中选用了C8051F单片机。C8051F单片机是完全集成的混合信号系统级芯片(SOC),他在一个芯片内集成了构成一个单片机
[电源管理]
浪潮华光成功研发出民用半导体激光器
潍坊新闻网1月20日上午讯 “自豪地说,民用半导体激光器件我们已摆脱长期依赖进口的局面。现在,我们已经发明成功,工艺性能稳定,产品投入规模生产阶段。”1月10日,记者在山东浪潮华光公司采访,听着技术专家高兴地介绍着,看到那长长的流水线正“收获成熟的芯片”。如今,我们的企业真正拥有了世界顶尖的核心技术,产品价格大幅度下降,让“等面值人民币”买到“等面值美元”的产品不再是梦想。 民用激光显示技术能够完美地再现自然色彩,是继黑白显示、彩色显示、数字显示之后的第四代显示技术。目前,国际上激光显示技术已发展到产业化前期阶段,未来3至5年,将是全球激光显示技术产业化发展的关键时期。为加快推进光电技术研究,打破关键技术的“封锁”,我国
[模拟电子]
利用单片机实现对激光器电流的精度控制
引 言 近年来,随着光电技术的迅猛发展,激光器已广泛应用于医疗、国防、测量等各个领域。而环境温度变化会直接影响激光器的波长。把关键元件(如高性能晶振、SAW 滤波器、光放大器、激光二极管) 的本机温度限制在窄范围内,可以提高电子系统的精度。一般需要将温度控制在0. 1 ℃内,激光器的工作精度才能很好地保持在0. 1nm 内 。文中的设计方案能为大功率半导体激光器提供有效支持,最大电流可达2. 5A。 1  半导体激光控制器的设计 激光控制器由受控恒流源,温度监视及控制电路,主控制器及显示器构成。整体结构原理见图1。 1. 1  受控恒流源: 为了使激光器输出稳定的激光,对流过激光器的电流要求
[单片机]
利用单片机实现对<font color='red'>激光器</font>电流的精度控制
Tower和瞻博网络推出全球首个采用单片集成III-V激光器的硅光子平台
据外媒报道,高价值模拟半导体解决方案的代工厂Tower Semiconductor和中国台湾安全、人工智能(AI)驱动网络公司瞻博网络(Juniper Networks)宣布推出全球首款带有集成III-V激光器、放大器调制器和检测器的硅光子(SiPho)平台,支持电信和数据中心的下一代光通信,以及人工智能和自动驾驶汽车激光雷达的新兴应用。 (图片来源:Tower Semiconductor) 该新平台将III-V激光器、半导体光放大器(SOA)、电吸收调制器(EAM)和光电探测器与硅光子器件共同集成在单个芯片上,构成尺寸更小、具有更多通道数且更节能的光学架构和解决方案。代工厂可用性可使产品开发人员能够为不同的市场创建高度
[汽车电子]
Tower和瞻博网络推出全球首个采用单片集成III-V<font color='red'>激光器</font>的硅光子平台
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved