RS-485的节点和距离的理论极限

发布者:NatureLover最新更新时间:2015-07-22 来源: ca800关键字:RS-485  节点  理论极限 手机看文章 扫描二维码
随时随地手机看文章
在下一代RS-485总线的概念下,BOSIKA将原本用于延长RS-485通信距离并且提高负载能力的中继器与RS-232/RS-485转换器进行绑定,推出RS-232/RS-485中继转换器,同时对RS-485信号的流向进行整理,使得用户在使用时感觉就是一个RS-232与RS-485的转换器。这种思想体现在最新的《一种带中继功能的串口转换器》专利文献中。对于BOSIKA而言,下一代RS-485总线的变化就是要不受最远距离和节点数的限制,同时下一代RS-232/RS-485中继转换器485A2还得保持无需供电的特性。在这个思路中,BOSIKA的RS-232/RS-485中继转换器突破了传统RS-485总线的节点数和距离的限制。每接一个RS-232/RS-485中继转换器,RS-485信号都得到了中继增强,所以这种RS-485总线不再受一条RS-485总线最远1200米的限制,而是当接M个转换器时就可以达到1200米的M倍距离,M是否不受限制---本文将讨论M的理论极限。传统的RS-485总线有接负载个数的限制,比如128个,就是同一条RS-485总线中最多挂128个RS-485口。使用M个RS-232/RS-485转换器构成的RS-485总线中,由于接入的转换器将RS-485总线分开为了M段(每一段之间相当于有一个中继器),所以当接M个转换器时就可以达到128×M倍的负载个数,M是否受负载数限制---本文也将讨论。 

 

1、突破RS-485节点和距离极限的布线方式

RS-232/RS-485中继转换器有一个DB-9孔的RS-232口和2个带接线端子的RS-485。DB-9孔端用于接RS-232口、DB-9针端通过接线端子板接RS-485口。485A2的接线端子板上有5个接线端子(A1、B1、GND、B2、A2) ,为两个RS-485口,共用GND地线。A1、B1与A2、B2是功能完全相同的,不分方向。 两个RS-485口具有相互中继的功能。 

 

      485A2应用与RS-485多机通信的典型接线图。若每一段RS-485的距离为1200米和128个,则整个RS-485系统的距离达到(M×1200米)、节点数达到(M×128)。可以看出,使用了485A2的RS-485总线布线极其简洁。最远两端可以用485A,也可以用485A2。注意整个RS-485系统共用GND线。

 

2、RS-485多机通信节点数的极限
       假设RS-485通信的地址编码为8位,那么最多的节点数就是2^8=256;假设RS-485通信的地址编码为10位,那么最多的节点数就是2^10=1024。10位已经多到极少用到。这个总线中的RS-485节点数的极限完全取决于通信软件 ,与总线中所接的RS-485中继转换器个数没有关系。实际上,因为受RS-485接口芯片性能的限制,每一段RS-485目前最多接128个节点,所以要达到256个的极限就得至少接一个485A2中继转换器,要达到1024极限就要至少8个485A2中继转换器。


      3、完全失败的RS-485通信距离的理论极限
        假设波特率为9600bps,就是每秒9600位。每个数据有1个起始位、8个数据位、1个校验位、1个停止位,一共10位。也就是传输一个数据(1byte)的时间是11/9600=0.001145s。在这个时间内电磁波的传输距离(也就是光速为299792458m/s )为343512米,即343.5千米。
       如果电信号的电磁波延时达到0.001145s(大约1.25ms),那么就会延时到错位一个数据,这样就无法正常通信。怎么理解?在某一时刻主机以9600bps同时向所有从机发送一组信号(比如ABCD),从机都立即响应回答数据,注意在9600bps下每传一个数据的时间差为1.25ms,也就是发A比发B早1.25ms,发B比发C早1.25ms……。那么主机收到的最远的节点的回答A的数据与1.25ms后最近的节点回答B的数据重叠,这样就无法通信。
       也就是RS-485的理论传输的最远距离在9600bps时只有大约343512米。假设每1200米进行一次中继,343512/1200=286,也就是说要达到RS-485的理论极限,需要至少286次中继延长。

 4、无误码的RS-485通信距离的理论极限
       并非只有当整个10位数据完全重叠时才无法通信,实际上只要有1位错位存在误码就不好。虽然有时候软件有一定纠错功能,容许存在一定程度的误码情况下也可以传输数据,但是我们还是要弄清楚无误码的极限。

假设波特率为9600bps,就是每秒9600位。也就是传输一位(1bite)的时间是1/9600=0.000104s。在这个时间内电磁波的传输距离(也就是光速为299792458m/s )为31228米。如果电信号的电磁波延时达到0.000104s(大约0.1ms),那么就会延时到错位一个数据位,这样就会出现误码。怎么理解?在某一时刻主机收到的最远的节点的数据会与大约0.1ms前最近的节点发送的数据重叠一位,这样就有误码了。也就是RS-485的无误码通信的理论最远距离在9600bps时只有大约31KM。假设每1200米进行一次中继,31228/1200=26.02,也就是说要达到RS-485的理论极限,需要至少26次中继延长。
      以上可以看出,RS-485通信距离的理论极限与波特率成反比,波特率越高极限距离越短。当波特率为115200bps时(=12×9600),无误码传输的理论极限距离为31228/12=2602米。只有大约2.6km!这也难怪RS-485的远程通信只说9600时传输多远,几乎不提115200bps。


    5、其它介质和其它总线的理论极限
        以上的RS-485距离极限343512米以及31228米(9600bps)与传输介质无关,就是说用光纤传输RS-485最远也是这么多,无线也是一样。
       以上的无误码RS-485距离极限31228米(9600bps)与协议无关,就是说用CAN、PROFIBIUS最远也是这么多,原理是一样的。

 以上的通信完全失败的RS-485距离极限343512米(9600bps)与数据位数有关,而且成正比例,就是说用CAN2.0(29位)比CAN1.0(11位)的极限更加大,大一倍以上。

 

到这里,大家一定会惊讶RS-485通信距离理论极限之短。互联网、手机、GPS是如何传输几乎无限远距离的呢?为了实现远程通信,互联网和手机通信几乎无法做到实时,而GPS对延时的计算及其精确。以后将另外专文讨论。

关键字:RS-485  节点  理论极限 引用地址:RS-485的节点和距离的理论极限

上一篇:RS-232隔离器可实现多路RS232的多机通信
下一篇:基于首英科技数据采集模块C-7018在钢化炉中的应用

推荐阅读最新更新时间:2024-05-02 23:49

RS-485网络配置
1、网络节点数   网络节点数与所选RS-485芯片驱动能力和接收器的输入阻抗有关,如75LBC184标称最大值为64点,SP485R 标称最大值为400点。实际使用时,因线缆长度、线径、网络分布、传输速率不同,实际节点数均达不到理论 值。例如75LBC184运用在500m分布的RS-485网络上节点数超过50或速率大于9.6kb/s时,工作可靠性明显下降。 通常推荐节点数按RS-485芯片最大值的70%选取,传输速率在1200~9600b/s之间选取。通信距离1km以内,从通 信效率、节点数、通信距离等综合考虑选用4800b/s最佳。通信距离1km以上时,应考虑通过增加中继模块或降 低速率的方法提高数据传输可靠性。 2、节点与主干
[嵌入式]
搜狐视频首曝移动吸金节点:三季度启动商业化
  尽管业界普遍把今年定义为“移动视频商业元年”,但视频网站对于自家准确的掘金时间点均态度模糊,近日,搜狐公司董事长兼CEO张朝阳在业界首度放言,“将通过《中国好声音》于三季度正式将移动流量变现”,在他看来,在无线端尝试商业化后,行业将进入新的竞争阶段。   释放掘金信号   事实上,今年年初多家视频网站已经在移动端开始悄然尝试变现,但是对外明示时间表搜狐视频是独一家。搜狐视频CEO邓晔告诉北京商报记者,为了铺路移动商业化,搜狐视频在近期做了多方面布局。   邓晔曾表示今年搜狐视频将要重点突击移动业务,这次搜狐视频不仅联手运营商采用包月的模式降低了资费门槛,还和三星达成独家战略合作,从新旗舰机型Galaxy S4开始,将在三星
[家用电子]
基于神经元芯片的远程水温监控系统
在生产生活中,热水的使用量非常大,而市面上流行的热水器通常只能设定固定的温度,并且一般需要在现场控制。但在许多工业场合,经常需要对远端热水装置的工作过程进行控制,使其生产出稳定的热水,并可随时调节水温。本文使用普通的单股双绞线作为网络物理介质,设计了一个基于LON网络的远程监控系统,来完成上述功能。 1 Lonworks总线和神经芯片 Lonworks控制网络是当前最为流行的现场总线之一,它的核心是神经元芯片(neuron chip)和LonTalk通信协议。LonTalk通信协议支持0SI/RM的所有七层模型,使得LON网络与其他网络有着良好的接口和兼容性。支持多种拓扑结构,通信介质可选双绞线、电力线、红外线、光纤、同轴电缆
[应用]
无线传感器网络的T5743芯片接受节点设计
一、引言 无线传感器网络将成百上千的传感器节点布置在一个特定的区域内形成监测网络,这些节点通过特定的协议高效、稳定、正确的组织起来,协同工作完成某项应用任务,达到数据采集、无线通信和信息处理的能力。无线传感器网络节点可以实时传送监测数据,具有快速构建、部署方便的特点,不易受到目标环境的限制,因此在环境监测、城市交通管理、医疗监护、仓储管理、汽车电子等领域有较好的应用。 在无线传感器网络中的节点通常是一个微型的嵌入式系统,对采集数据、接收数据、处理数据、发送数据等的功能要求各有兼顾,其处理能力、存储能力和通信能力都是对采集的数据进行管理和协同工作,因此传感器网络节点的软硬件技术是传感器网络研究的重点。本文主要是对无线传感
[单片机]
无线传感器网络的T5743芯片接受<font color='red'>节点</font>设计
基于PIC18单片机的RS-485/CAN智能转换器的设计策
RS-485是一个电气接口规范,它定义了一个基于单对平衡线的多点、双向(半双工)通信链路,只对接口的电气特性做出规定,而不涉及接插件、电缆或协议,在此基础上用户可以建立自己的高层通信协议,在当时看来是一种相对经济具有相当高噪声抑制相对高的传输速率传输距离远和宽共模范围的通信平台,因此基于RS-485总线的通讯方法得到了广泛的应用。 由于RS-485总线本身存在的许多局限性,随着科技的发展RS-485的总线效率低,系统的实时性差、通讯的可靠性低、后期维护成本高、网络工程调试复杂、传输距离不理想、单总线可挂接的节点少、应用不灵活等缺点慢慢的暴露出来。虽历经多次改进但均是治标不治本。 CAN-bus是一种多主方式的串行通
[单片机]
基于PIC18单片机的<font color='red'>RS-485</font>/CAN智能转换器的设计策
电机温度监测系统低功耗无线节点模块设计
电机在长期高速运转的情况下会产生大量热量,引起主要部件的温度升高,出现电机烧毁现象,像动车组列车牵引电机,可能会带来严重的安全隐患,由于大部分电机的特殊结构,传统的红外轴温监测系统,无法检测到电机的温度。实时测量电机的温度,防止电机过热产生故障是设计系统的目标。本文提出的温度检测系统利用内嵌Cortex-M0内核的低成本、低功耗MCU把温度传感器采集到的温度数据通过高集成度、低功耗的射频芯片发送到监控中心实现。 1 模块结构与硬件设计方案 1.1 无线模块方案 本系统网络节点由数据采集、处理、传输和电源4个主要部分组成。传感探测单元由传感器进行监测区域内待测对象的信息采集,选用DS18B20芯片;微控制单元实现数据的分析、
[测试测量]
电机温度监测系统低功耗无线<font color='red'>节点</font>模块设计
基于CAN总线的温度检测节点设计
在对电子点火模块的测试中,为了模拟电子点火系统的真实工况,电子点火模块往往被置于高于常温的环境下进行电子点火实验,以获得最接近真实汽车运行工况的点火参数数据。由于电子点火模块自身的发热,其核心元件的温度成为影响电子模块性能的重要因素;另外,还要考虑环境温度是否达到模拟真实工况的要求等。 本文介绍了一种应用LM35温度传感器和PICMicro的温度检测节点的设计方案,用于检测在模拟汽车电子点火的过程中,电子点火模块的核心模块温度和环境温度,将阐明模块结构、工作原理及采样值量化的方法。 节点原理与结构 该温度检测节点由传感器电路、信号调理电路、单片机应用系统、CAN总线接口等构成。电路基本工作原理是:传感器电路将感应
[工业控制]
基于P87C591单片机的信号采集节点的设计
  1 引言   在工程机械液压系统状态监测与故障诊断中,传感器信号的调理、采集和信号的特征提取,以及把采集的数据发送给主机(中心处理单元)要由信号采集单元实现。本文介绍了基于P87C591的CAN总线系统信号采集节点的设计。   CAN是1986年2月在SAE (汽车工程人员协会)大会上, 由Rober Bosch公司提出的新总线系统,称之为“汽车串行控制局域网”(Automotive Se.rial Controller Area Network),它是最主要的总线协议之一。由于CAN总线采用了许多新技术及独特的设计,使得它与一般的通信总线相比具有突出的可靠性、实时性和灵活性,从而使其应用范围不断扩展。目前,CAN已经形成
[单片机]
基于P87C591单片机的信号采集<font color='red'>节点</font>的设计
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved