通常,混合动力汽车同时具备内燃机引擎和电力马达驱动系统,并利用功率半导体模块来实现电力马达的速度调节。通常功率半导体模块在车辆上的冷却方式主要为风冷和液态冷却。不同汽车制造商设计的混合动力系统大相径庭,直接并无可比性。除冷却系统之外,功率半导体模块封装甚至半导体技术本身都各不相同。
为了使这些系统更具可比性,本项研究采用了一个适用于不同冷却系统的、被称为HybridPACK的通用“基础功率模块”。在配置中采用了一套基本输入参数集,例如行驶循环、电机类型、甚至半导体的电气特性等。同时,为简化计算,忽略了不同驾驶策略的影响。
在电力电子系统中,功率半导体模块温度及温度波动对可靠性有较大的影响。为此,基于功率半导体模块的功率损耗计算和热仿真模型。开发了一个程序来计算整个行驶循环期间的温度。
通过计算出从功率半导体模块至冷却系统的温度分布,可以评估出模块各部分受到的热应力,诸如焊接点或键合点等。通过将热应力转换为可靠性试验数据,可以预测出功率半导体模块的使用寿命。
从行驶循环到可靠性试验
可靠性试验
在使用寿命期内,模块要承受环境(气候)造成的被动温度波动,及因模块运行发热造成的主动温度循环。温度循环和功率循环试验,可以模拟以上几种情况对模块寿命的影响。
温度循环:在温度循环试验中,在没有电气应力的情况下,改变功率半导体模块的环境温度,包括对(TST:热冲击试验)和(TC:热循环试验)。这项实验主要用于评估焊接点的可靠性,及评估模块在贮存、运输或使用过程中对可能发生的温度突变的耐受性。
功率循环:功率循环(PC)试验可用于确定功率模块内部半导体芯片和内部连接点焊接,在通过周期性电流时,对热应力和机械应力的耐受性。周期性施加电流会导致温度快速变化,会导致绑定线机械位置波动。功率循环试验对高温条件下的工作寿命预期分析具有代表性。
热应力造成的主要故障是IGBT模块的内部焊接疲劳和焊接线脱落。
研究方法
图1根据逆变器系统的冷却条件和行驶策略(行驶工况曲线、电机和行驶控制)信息,可得出功率模块的在特定工况下,关键电气参数特性集,进而计算出典型循环次数,以评估功率模块的寿命,在本项研究中,几个红色参数是变量。
图1:计算等效试验循环次数的一般方法。在本项研究中,只有红色参数是变量。
基本条件(输入参数)
为了不受行驶条件、电机特性以及芯片特性的影响,选择了一个常见的输入参数集。
选择了一个业内广泛应用的功率半导体模块。这个类型的模块经专门设计,适用于最高功率在20 kW以内的轻度混合动力电动汽车应用。针对高达150°C的工作节温设计,该模块为6管合一的IGBT设计,最高额定电流为400A/650V。
图2:基本模块基于HybridPACK1
典型汽车行驶循环工况包括多个启停序列和5个满负荷条件下的10秒钟长的恢复循环,绘制出任务曲线。并假定,模块栅极驱动条件理想,尽管这有可能低估整个逆变器系统中的功率损耗。因此,通过计算最恶劣工况条件下的功率损耗(最高温度)来补偿。
计算功率损耗
通过计算静态(PDC:导通)和动态(PSW:开关)损耗,可计算出模块的功率损耗。
计算逆变过程中芯片的功率损耗时,使用了正弦半波来模拟芯片中的热量。是基于IPOSIM中使用的计算方法。
基于这种方法,可以根据模块的电气参数,计算出IGBT3 和二极管的传导损耗 [10]。
必须指出的是,参数r、VCE0、rD和VF0均取决于温度T。
利用等式3和4,可以计算出功率模块的开关损耗。开关损耗是开关频率fsw与按所施加的电压VDC、电流?和开关能量Eon_nom、Eoff_nom、Erec_nom的乘积[11]。
所有必需的参数均摘自功率模块数据表。
温度分布模拟
通常,采用RC网络(Cauer模型或Foster模型)来描述功率模块系统的热模型[13]。发热源及模拟实际组件状态的RC网络。R’s和C’s值,基于系统的材料属性和外形尺寸,通过3D瞬态有限元模拟可得出,或者可以通过实验直接测定这两个值。[page]
图3:红外测定IGBT/二极管工作温度
RC网络,利用芯片间发热的交叉耦合关系,定义了热阻抗Zth juncTIon ambient参数,描述了IGBT与二极管之间的发热的相互影响。
图4:RC网络(Foster模型)
除典型网络之外,增加了两个元素来表现焊接层。因此,芯片的功率损耗导致焊接层温度升高。
计算热循环造成的焊接疲劳,必须了解的参数为焊接层温度。此外,模型中引入电压源补偿环境温度变化带来的影响。
温度曲线
借助热模型,可以计算出在特定行驶循环的负载条件下,IGBT、二极管和焊接层的温度。
同时,需要考虑功率半导体模块的使用环境,例如,对于安装在驾驶舱附近,并用风冷散热的系统,环境温度设置为40°C(图5)。
图5:在一个3,000秒的行驶循环中,安装在风冷散热器上的功率模块的温度曲线
在本例中,所得到的最高温度分别是Tj max IGBT = 118°C、Tj max diode = 126℃和Tj max solder = 96℃(同时请参见表2)。
引起焊接层和焊接线老化的主要参数不是温度本身,而是温度波动。同时,在仿真中加入了一个自动算法,以计算出温差?T。
确定?T发生数
主动循环:图6所示为一个风冷系统中的二极管,特定温度波动的发生次数。幅度低于3 K的温度波动被忽略,因为这种温度波动不会明显缩短组件使用寿命。多数温度波动都低于30°K.温升。只有很少的循环会出现更高的?T。只观察到5次?T > 60°K的显著温度波动。这些温度波动是图5中的峰值。
图6:二极管:在一个行驶循环中,不同?T(α=454W/m2 K)的循环次数
叠加在主动温度波动上的,是工作环境造成的被动温度波动。
被动循环:在工作过程中,冷却系统温度升高也会导致温度波动,在计算组件使用寿命时,必须考虑这种温度波动。
假定汽车的使用寿命为15年,每天2个循环,功率模块总共要经历10950个循环。环境温度如表1所示,户外温度从5天-25℃到35天309℃。
表1:环境温度影响工作温度,温升引起冷却系统温度升高,而导致被动温度波动将温升序列的温度波动定义为:行驶循环中的最高温度,与开始时环境温度的温差。(参阅表3)
在可靠性试验中,对器件施加多个不同的温度波动是不现实的。因此,必须确定一个标准?T。
从汽车工况循环到到功率模块试验循环
焊接疲劳加速老化计算
机械疲劳、材料疲劳或材料变形等模型,通常有与机械应力循环或温度变化相关。使用这种被称为(改良)Coffin-Manson模型的模型,来模拟功率模块反复开关,产生的温度循环,所导致的焊接或其他金属中的裂纹增长。这种经常被引用的等式的式子清楚地表明,结点温度波动幅度很大时,疲劳会导致器件过早发生故障。这个等式的派生等式是两个不同热循环温差范围(?Tduty_cycle和?Ttest)故障循环次数之间的关系[14]。尽管该参考资料提到的是不同的指数,本计算采用的指数是3.3。该模型的式子如下:
可以从曲线的?Tduty_cycle对应的负载循环次数nduty_cycle,计算出特定?Ttest对应的等效循环次数ntest_cycle。
焊接线加速寿命计算
等式6所示为特定负载条件(电流I、结点温度Tj、工作时间ton和温度波动?T)计算等效循环次数的公式。
这个方程式也包含了不同温差的比率,但根据大量试验的结果作了修改[15]。
等式7基于等式6,所有任何负载循环i的p变换的总和,得出等效试验循环次数(条件:?Ttest=100K、Tj,min=50°C、ton, test = 2s 和参考电流Itest = 400A)。
参数差异性
冷却条件
冷却能力:比较了2个风冷系统,1个液冷系统和1直接冷却(带针式散热器的液态冷却系统)系统。
对于风冷系统和液冷系统,假定功率模块底板与散热器之间涂抹了导热硅脂。
通过散热片和模块间的热传递系数α,比较两种冷却系统的冷却能力。(参阅表2:α = 124 W/m2K – 冷却能力较弱的风冷散热器;α = 454 W/m2K – 强制风冷散热器;α = 20000 W/m2K – 冷却能力较强的液冷散热器)
表2:系统参数变化
为了实现从功率模块到散热器的理想热传递,在功率模块底板配有鳍片散热片。这种类型的模块直接安装在开放式液冷散热器上,鳍片直接接触冷却剂。因此,无需使用导热性较差的导热膏。由于底板直接接触冷却液,未定义α值。在这种情况下,冷却液流速表示不同的冷却能力。[page]
图7:带鳍片散热片的底板(HybridPACKTM2)[16] [17]与平板式底板示例
环境温度:如第2.6节所指出,对于风冷系统,最高环境温度设置为40°C,对于液冷系统则定义为70°C/95°C(表2)。
电气参数
电池电压:许多汽车制造商都更倾向将轻度混合动力/电动汽车的动力电池,设定为较低的电压。通过增加电池电芯数量可以实现更高电压,但这显然会导致成本和电池重量的增加。为了了解电池电压VDC对系统的影响,比较了两套电气参数(表2)。
结果
如图1所示,行驶循环过程中温度波动包括,功率模块运行产生的主动温度波动,和工作环境造成的被动温度波动。对于芯片来说,必须考虑IGBT和二极管的最糟情况条件。5次循环最高负载都在二极管上。因此,以二极管为例分析最恶劣情况。
功率循环:对于绑定线焊接脱落的寿命计算,绑定线的最高温度设置为最高芯片温度Tj max。寿命循环建模可以计算在被动/主动循环下的等效功率循环次数。
通过利用等式7,计算出图6中给出的?T次数,并推导出等效主动循环次数。与被动循环类似,行驶循环次数被设置为10950。
为了计算被动循环应力的等效试验循环次数,对表1中的循环次数进行了转换。结果如表3所示。
表3:二极管功率循环:计算代表被动温度波动的等效循环次数
热循环:与3.1节中描述的被动/主动温度循环转换,采用了类似的过程。
从行驶工况循环可计算得出焊接层的最高温度(图5)。
表4:焊接层热循环:被动温度波动的等效循环次数
概述
图8和图9所示为不同参数的等效试验循环次数的比较。
功率循环:在图8所示的功率循环次数(条件:?Ttest=100K、Tj,test=150°C、ton, test = 2s 和参考电流Itest = 400A),是主动循环/被动波动循环次数的总和。
图8:不同参数的特定行驶循环的等效功率循环次数
热循环:在图9中,热循环试验的等效试验循环次数(条件:?T = 80K),是主动循环次数和被动波动循环次数的总和。
图9:不同参数的特定行驶循环的等效热循环次数
在所有情况下,主动循环的影响可以忽略不计。相对被动温度波动很高的?T,工作过程中焊接层的温度波动幅度很小(< 55°C,强制风冷)。
声明
尽管这两个试验的趋势很相似,也无法对两个可靠性试验进行比较,因为在这两个试验中?T越高,等效试验循环次数就越多。
1)冷却能力越好,可靠性要求越低。(当然,任何人都能做出这样浅显的声明,本文的目的是表明冷却能力对可靠性要求有多大的影响。)
2)当环境温度为40°C时,强制风冷的性能与液冷器在70°C环境温度下性能类似。
3)将冷却剂温度从70°C升至95°C,会使等效循环次数翻一番。必须为逆变器配备单独(独立)的冷却回路。采用常规安装和连接技术,不能实现利用125°C的发动机冷液散热的设计。
4)即使模块未工作,户外温度变化也会使焊接层发生温度波动。
5)使用直接冷却散热方式的模块,将大大降低了对模块的可靠性要求。
6)提高电池电压,可使风冷系统的功率循环要求降低4倍;热要求降低40%。
7)更好的冷却能力,可以减轻母线电压波动的影响。
8)避免出现满负荷条件下的5个10秒钟长的温度循环,可以将对功率循环的要求降低60%,对热循环的要求降低40%(对于强制风冷,比较图8和图9中的虚线列)。
最后两个声明表明,混合动力汽车的开发有必要采用全局性系统方法,包括行驶策略、冷却系统、电池电压和模块的散热能力。汽车制造商、逆变器供应商与功率半导体模块供应商联合进行开发,可以避免功率模块太大,并能降低成本。
结语
如今,大多数混合动力汽车使用的功率模块。由于缺乏标准,不同汽车制造商采用的系统大相径庭,因此不太可能对这些系统进行比较。为了使逆变器系统变得更具可比性,本项研究采用了一个统一的“基础功率模块”和一套常见的输入参数。
为了评估混合动力汽车(HEV)功率半导体模块必须具备的热/功率循环稳定性,开发了一个程序来计算在特定行驶循环中,芯片和焊接层的温度变化。通过将主动和被动热应力对焊料和焊接点造成的热应力,转换为可靠性试验数据,计算出等效试验循环次数。
在本文中,比较了8套不同的参数,包括不同的冷却条件和/或电池电压。结果是:汽车制造商、逆变器供应商和功率半导体模块供应商应联合进行开发,有助于通过调整行驶策略、冷却系统、电池电压和模块的散热能力,找到经济高效的解决方案。
备注
本模型中使用的变量存在一些其他关联,这使得该模型仅可用于选定数据的试验条件范围。因此,笔者强烈建议在应用该模型之前,咨询英飞凌科技的专家。
关键字:功率模块 混合动力 汽车 稳定性
引用地址:如何解决混合动力汽车功率模块的稳定性问题
为了使这些系统更具可比性,本项研究采用了一个适用于不同冷却系统的、被称为HybridPACK的通用“基础功率模块”。在配置中采用了一套基本输入参数集,例如行驶循环、电机类型、甚至半导体的电气特性等。同时,为简化计算,忽略了不同驾驶策略的影响。
在电力电子系统中,功率半导体模块温度及温度波动对可靠性有较大的影响。为此,基于功率半导体模块的功率损耗计算和热仿真模型。开发了一个程序来计算整个行驶循环期间的温度。
通过计算出从功率半导体模块至冷却系统的温度分布,可以评估出模块各部分受到的热应力,诸如焊接点或键合点等。通过将热应力转换为可靠性试验数据,可以预测出功率半导体模块的使用寿命。
从行驶循环到可靠性试验
可靠性试验
在使用寿命期内,模块要承受环境(气候)造成的被动温度波动,及因模块运行发热造成的主动温度循环。温度循环和功率循环试验,可以模拟以上几种情况对模块寿命的影响。
温度循环:在温度循环试验中,在没有电气应力的情况下,改变功率半导体模块的环境温度,包括对(TST:热冲击试验)和(TC:热循环试验)。这项实验主要用于评估焊接点的可靠性,及评估模块在贮存、运输或使用过程中对可能发生的温度突变的耐受性。
功率循环:功率循环(PC)试验可用于确定功率模块内部半导体芯片和内部连接点焊接,在通过周期性电流时,对热应力和机械应力的耐受性。周期性施加电流会导致温度快速变化,会导致绑定线机械位置波动。功率循环试验对高温条件下的工作寿命预期分析具有代表性。
热应力造成的主要故障是IGBT模块的内部焊接疲劳和焊接线脱落。
研究方法
图1根据逆变器系统的冷却条件和行驶策略(行驶工况曲线、电机和行驶控制)信息,可得出功率模块的在特定工况下,关键电气参数特性集,进而计算出典型循环次数,以评估功率模块的寿命,在本项研究中,几个红色参数是变量。
图1:计算等效试验循环次数的一般方法。在本项研究中,只有红色参数是变量。
基本条件(输入参数)
为了不受行驶条件、电机特性以及芯片特性的影响,选择了一个常见的输入参数集。
选择了一个业内广泛应用的功率半导体模块。这个类型的模块经专门设计,适用于最高功率在20 kW以内的轻度混合动力电动汽车应用。针对高达150°C的工作节温设计,该模块为6管合一的IGBT设计,最高额定电流为400A/650V。
图2:基本模块基于HybridPACK1
典型汽车行驶循环工况包括多个启停序列和5个满负荷条件下的10秒钟长的恢复循环,绘制出任务曲线。并假定,模块栅极驱动条件理想,尽管这有可能低估整个逆变器系统中的功率损耗。因此,通过计算最恶劣工况条件下的功率损耗(最高温度)来补偿。
计算功率损耗
通过计算静态(PDC:导通)和动态(PSW:开关)损耗,可计算出模块的功率损耗。
计算逆变过程中芯片的功率损耗时,使用了正弦半波来模拟芯片中的热量。是基于IPOSIM中使用的计算方法。
基于这种方法,可以根据模块的电气参数,计算出IGBT3 和二极管的传导损耗 [10]。
必须指出的是,参数r、VCE0、rD和VF0均取决于温度T。
利用等式3和4,可以计算出功率模块的开关损耗。开关损耗是开关频率fsw与按所施加的电压VDC、电流?和开关能量Eon_nom、Eoff_nom、Erec_nom的乘积[11]。
所有必需的参数均摘自功率模块数据表。
温度分布模拟
通常,采用RC网络(Cauer模型或Foster模型)来描述功率模块系统的热模型[13]。发热源及模拟实际组件状态的RC网络。R’s和C’s值,基于系统的材料属性和外形尺寸,通过3D瞬态有限元模拟可得出,或者可以通过实验直接测定这两个值。[page]
图3:红外测定IGBT/二极管工作温度
RC网络,利用芯片间发热的交叉耦合关系,定义了热阻抗Zth juncTIon ambient参数,描述了IGBT与二极管之间的发热的相互影响。
图4:RC网络(Foster模型)
除典型网络之外,增加了两个元素来表现焊接层。因此,芯片的功率损耗导致焊接层温度升高。
计算热循环造成的焊接疲劳,必须了解的参数为焊接层温度。此外,模型中引入电压源补偿环境温度变化带来的影响。
温度曲线
借助热模型,可以计算出在特定行驶循环的负载条件下,IGBT、二极管和焊接层的温度。
同时,需要考虑功率半导体模块的使用环境,例如,对于安装在驾驶舱附近,并用风冷散热的系统,环境温度设置为40°C(图5)。
图5:在一个3,000秒的行驶循环中,安装在风冷散热器上的功率模块的温度曲线
在本例中,所得到的最高温度分别是Tj max IGBT = 118°C、Tj max diode = 126℃和Tj max solder = 96℃(同时请参见表2)。
引起焊接层和焊接线老化的主要参数不是温度本身,而是温度波动。同时,在仿真中加入了一个自动算法,以计算出温差?T。
确定?T发生数
主动循环:图6所示为一个风冷系统中的二极管,特定温度波动的发生次数。幅度低于3 K的温度波动被忽略,因为这种温度波动不会明显缩短组件使用寿命。多数温度波动都低于30°K.温升。只有很少的循环会出现更高的?T。只观察到5次?T > 60°K的显著温度波动。这些温度波动是图5中的峰值。
图6:二极管:在一个行驶循环中,不同?T(α=454W/m2 K)的循环次数
叠加在主动温度波动上的,是工作环境造成的被动温度波动。
被动循环:在工作过程中,冷却系统温度升高也会导致温度波动,在计算组件使用寿命时,必须考虑这种温度波动。
假定汽车的使用寿命为15年,每天2个循环,功率模块总共要经历10950个循环。环境温度如表1所示,户外温度从5天-25℃到35天309℃。
表1:环境温度影响工作温度,温升引起冷却系统温度升高,而导致被动温度波动将温升序列的温度波动定义为:行驶循环中的最高温度,与开始时环境温度的温差。(参阅表3)
在可靠性试验中,对器件施加多个不同的温度波动是不现实的。因此,必须确定一个标准?T。
从汽车工况循环到到功率模块试验循环
焊接疲劳加速老化计算
机械疲劳、材料疲劳或材料变形等模型,通常有与机械应力循环或温度变化相关。使用这种被称为(改良)Coffin-Manson模型的模型,来模拟功率模块反复开关,产生的温度循环,所导致的焊接或其他金属中的裂纹增长。这种经常被引用的等式的式子清楚地表明,结点温度波动幅度很大时,疲劳会导致器件过早发生故障。这个等式的派生等式是两个不同热循环温差范围(?Tduty_cycle和?Ttest)故障循环次数之间的关系[14]。尽管该参考资料提到的是不同的指数,本计算采用的指数是3.3。该模型的式子如下:
可以从曲线的?Tduty_cycle对应的负载循环次数nduty_cycle,计算出特定?Ttest对应的等效循环次数ntest_cycle。
焊接线加速寿命计算
等式6所示为特定负载条件(电流I、结点温度Tj、工作时间ton和温度波动?T)计算等效循环次数的公式。
这个方程式也包含了不同温差的比率,但根据大量试验的结果作了修改[15]。
等式7基于等式6,所有任何负载循环i的p变换的总和,得出等效试验循环次数(条件:?Ttest=100K、Tj,min=50°C、ton, test = 2s 和参考电流Itest = 400A)。
参数差异性
冷却条件
冷却能力:比较了2个风冷系统,1个液冷系统和1直接冷却(带针式散热器的液态冷却系统)系统。
对于风冷系统和液冷系统,假定功率模块底板与散热器之间涂抹了导热硅脂。
通过散热片和模块间的热传递系数α,比较两种冷却系统的冷却能力。(参阅表2:α = 124 W/m2K – 冷却能力较弱的风冷散热器;α = 454 W/m2K – 强制风冷散热器;α = 20000 W/m2K – 冷却能力较强的液冷散热器)
表2:系统参数变化
为了实现从功率模块到散热器的理想热传递,在功率模块底板配有鳍片散热片。这种类型的模块直接安装在开放式液冷散热器上,鳍片直接接触冷却剂。因此,无需使用导热性较差的导热膏。由于底板直接接触冷却液,未定义α值。在这种情况下,冷却液流速表示不同的冷却能力。[page]
图7:带鳍片散热片的底板(HybridPACKTM2)[16] [17]与平板式底板示例
环境温度:如第2.6节所指出,对于风冷系统,最高环境温度设置为40°C,对于液冷系统则定义为70°C/95°C(表2)。
电气参数
电池电压:许多汽车制造商都更倾向将轻度混合动力/电动汽车的动力电池,设定为较低的电压。通过增加电池电芯数量可以实现更高电压,但这显然会导致成本和电池重量的增加。为了了解电池电压VDC对系统的影响,比较了两套电气参数(表2)。
结果
如图1所示,行驶循环过程中温度波动包括,功率模块运行产生的主动温度波动,和工作环境造成的被动温度波动。对于芯片来说,必须考虑IGBT和二极管的最糟情况条件。5次循环最高负载都在二极管上。因此,以二极管为例分析最恶劣情况。
功率循环:对于绑定线焊接脱落的寿命计算,绑定线的最高温度设置为最高芯片温度Tj max。寿命循环建模可以计算在被动/主动循环下的等效功率循环次数。
通过利用等式7,计算出图6中给出的?T次数,并推导出等效主动循环次数。与被动循环类似,行驶循环次数被设置为10950。
为了计算被动循环应力的等效试验循环次数,对表1中的循环次数进行了转换。结果如表3所示。
表3:二极管功率循环:计算代表被动温度波动的等效循环次数
热循环:与3.1节中描述的被动/主动温度循环转换,采用了类似的过程。
从行驶工况循环可计算得出焊接层的最高温度(图5)。
表4:焊接层热循环:被动温度波动的等效循环次数
概述
图8和图9所示为不同参数的等效试验循环次数的比较。
功率循环:在图8所示的功率循环次数(条件:?Ttest=100K、Tj,test=150°C、ton, test = 2s 和参考电流Itest = 400A),是主动循环/被动波动循环次数的总和。
图8:不同参数的特定行驶循环的等效功率循环次数
热循环:在图9中,热循环试验的等效试验循环次数(条件:?T = 80K),是主动循环次数和被动波动循环次数的总和。
图9:不同参数的特定行驶循环的等效热循环次数
在所有情况下,主动循环的影响可以忽略不计。相对被动温度波动很高的?T,工作过程中焊接层的温度波动幅度很小(< 55°C,强制风冷)。
声明
尽管这两个试验的趋势很相似,也无法对两个可靠性试验进行比较,因为在这两个试验中?T越高,等效试验循环次数就越多。
1)冷却能力越好,可靠性要求越低。(当然,任何人都能做出这样浅显的声明,本文的目的是表明冷却能力对可靠性要求有多大的影响。)
2)当环境温度为40°C时,强制风冷的性能与液冷器在70°C环境温度下性能类似。
3)将冷却剂温度从70°C升至95°C,会使等效循环次数翻一番。必须为逆变器配备单独(独立)的冷却回路。采用常规安装和连接技术,不能实现利用125°C的发动机冷液散热的设计。
4)即使模块未工作,户外温度变化也会使焊接层发生温度波动。
5)使用直接冷却散热方式的模块,将大大降低了对模块的可靠性要求。
6)提高电池电压,可使风冷系统的功率循环要求降低4倍;热要求降低40%。
7)更好的冷却能力,可以减轻母线电压波动的影响。
8)避免出现满负荷条件下的5个10秒钟长的温度循环,可以将对功率循环的要求降低60%,对热循环的要求降低40%(对于强制风冷,比较图8和图9中的虚线列)。
最后两个声明表明,混合动力汽车的开发有必要采用全局性系统方法,包括行驶策略、冷却系统、电池电压和模块的散热能力。汽车制造商、逆变器供应商与功率半导体模块供应商联合进行开发,可以避免功率模块太大,并能降低成本。
结语
如今,大多数混合动力汽车使用的功率模块。由于缺乏标准,不同汽车制造商采用的系统大相径庭,因此不太可能对这些系统进行比较。为了使逆变器系统变得更具可比性,本项研究采用了一个统一的“基础功率模块”和一套常见的输入参数。
为了评估混合动力汽车(HEV)功率半导体模块必须具备的热/功率循环稳定性,开发了一个程序来计算在特定行驶循环中,芯片和焊接层的温度变化。通过将主动和被动热应力对焊料和焊接点造成的热应力,转换为可靠性试验数据,计算出等效试验循环次数。
在本文中,比较了8套不同的参数,包括不同的冷却条件和/或电池电压。结果是:汽车制造商、逆变器供应商和功率半导体模块供应商应联合进行开发,有助于通过调整行驶策略、冷却系统、电池电压和模块的散热能力,找到经济高效的解决方案。
备注
本模型中使用的变量存在一些其他关联,这使得该模型仅可用于选定数据的试验条件范围。因此,笔者强烈建议在应用该模型之前,咨询英飞凌科技的专家。
上一篇:液压制动能量再生系统的电子控制系统设计
下一篇:电动汽车的电池管理系统控制
推荐阅读最新更新时间:2024-05-02 23:55
为什么说新能源汽车必将是中国引领?
世界正在进入电动化时代,并且中国正在引领着电动车市场的发展。在技术方面,目前各大厂商已经推出了纯电池电动车,混合动力电动车,插电式混合动力电动车和48伏轻度混合动力系统。虽然目前各个地区和国家的汽车公司针对新能源的发展路径各不相同,但世界各国对环境的处罚确是惊人的一致,也就是说如果汽车厂商不减少二氧化碳,那么就必须支付巨额罚款。 在欧洲,已经制定了严苛的法律,规定到2021年将至95g/km,到2025年达到81g/km。未能达到此目标的汽车厂商将面临数十亿欧元的罚款。假如按照目前各大汽车厂商的对动力总成的标准,如果到2025年达不到要求的话,那么预计大众汽车至少将会面临63亿欧元罚款,现代起亚超过40亿欧元,FCA超过
[嵌入式]
经受严格考验的汽车电动机
飞机在起飞以后可以数小时在几乎同样的环境条件下飞行,而汽车则会在整个行驶时间内持续性地受到各种可能的干扰因素的影响,不可能有确定不变的工作状态,所有的结构部件的设计都必须考虑到这一点,因此质量是最重要的事情。在考虑到所有在实际操作中可能出现的负荷和影响的情况下进行更加严格的检验是生产高质量的产品必不可少的前提。 图1 在侵蚀性环境条件下的电动机 在现代化的技术要求很高的车辆上,越来越多地使用了无电刷的电动机,即所谓的BLDC驱动装置,用作辅助和伺服系统。只有通过各种极端条件试验的能保证运行可靠的转向机构伺服传动装置才能使我们的生活更加安全可靠。 汽车在其整个使用寿命期间要满足各种各样的要求,汽车制造厂商在进行研制工作时就考虑到
[嵌入式]
智能汽车要接着用Android吗?工信部原部长:操作系统比芯片更迫切
10月11日,汽车9月销量榜出炉。根据乘联会发布的数据,9月乘用车市场零售销量为194.7万辆,其中新能源汽车达到61.1万辆,创近5年的月销数据新高,渗透率进一步提升。“金九”销售数据展示着汽车“新能源革命”的冰山一角。在这场变革中,与电动化风潮并行的,还有智能化。 新能源汽车是汽车智能化的理想载体。从理想L9的“五屏联动”,到小鹏G9的“5D音乐厅”,群起的造车新势力们,无一不把汽车智能化作为下一步发力方向之一。 智能网联和自动驾驶的快速落地,正引导汽车价值方式发生改变。 而打好智能化基础需要两大核心技术,一个是芯片,另一个就是操作系统 。 “在车用操作系统发展趋势方面,‘缺芯’已被重视,但‘少魂’易被忽视。很多
[汽车电子]
秒变电动汽车安全专家
目前小编坚持认为,要选对电动汽车,了解动力锂电池非常重要。今天小编教你5个步骤解析电动汽车安全问题。下面就随汽车电子小编一起来了解一下相关内容吧。 第1弹:先看电动汽车的立体结构图 这张图,明白一点,电池是分布在汽车底盘上的。 特斯拉电动汽车底盘 第2弹:确定电池分布在底盘上,但不是一块电池,而是好多节电池串并得来的。以圆柱型锂电池为例,上图上真相。 知道这些! 秒变电动汽车安全专家 电池串联,就要求必须要有极其良好的一致性,就是每节的容量都要一样。否则充电的时候,一个没充满,一个过充了,危险就会非常大。 如果此时你用的是快充而不是慢充的话,瞬间那么大能量输入封闭空间,这危险系数放大了好多倍。 小编
[汽车电子]
大联大品佳集团推出基于Infineon产品的汽车照明通用单片机解决方案
2021年11月4日,致力于亚太地区市场的领先半导体元器件分销商--- 大联大控股 宣布,其旗下品佳推出基于英飞凌(Infineon)CK8CKIT-044评估板的低成本汽车照明通用单片机解决方案。 图示1-大联大品佳基于Infineon产品的低成本汽车照明通用单片机方案的展示板图 如今,汽车已成为人们生活中必不可少的交通工具,其安全问题也受到社会极大的关注。在汽车所有的组成部分中,尾灯对于汽车安全性的重要性不言而喻,它的存在大幅度减少了交通事故的发生。因此,如何设计尾灯的各种功能以最大化其价值,是各大厂商亟需解决的问题。随着技术的发展,当今的汽车尾灯不仅外观多变,而且功能也有了很大的提高,而这主要的功劳则要归功于尾灯控制
[汽车电子]
智能汽车如何改变我们的生活方式和出行方式?
随着科技的飞速发展,汽车的智能化已经成为现代交通领域的一大趋势。从自动驾驶技术到智能互联功能,智能化汽车正在不断地改变我们的用车习惯。本文将探讨汽车的智能化对我们用车习惯的影响,并分析其背后的原因。 一、驾驶方式的改变 首先,汽车的智能化带来的最显著变化是驾驶方式的改变。传统的驾驶方式需要驾驶员全神贯注地操作车辆,而智能化汽车则可以通过自动驾驶技术来减轻驾驶员的负担。例如,许多汽车现在配备了自适应巡航功能,可以根据前方车辆的速度自动调整车速,保持安全距离。此外,一些汽车还具备自动泊车功能,可以帮助驾驶员更轻松地完成停车操作。 二、出行规划的改变 其次,汽车的智能化也改变了我们的出行规划方式。智能互联功能使得汽车可以
[嵌入式]
贸泽开售英飞凌MOTIX™ TLE989x MCU: 备CAN (FD) 接口的单芯片功率IC,更适合汽车/BLDC电机控制
2023 年 10 月 23 日 – 提供超丰富半导体和电子元器件™的业界知名新品引入 (NPI) 代理商贸泽电子 (Mouser Electronics) 即日起开售英飞凌MOTIX™ TLE989x微控制器 (MCU)。 TLE989x系列微控制器扩展了其全面且经过验证的MOTIX™ MCU嵌入式功率IC产品组合,并采用CAN (FD) 作为通信接口。与TLE987x产品系列相比,此系列的处理能力提高了约60%,同时还拥有额外的功能安全和网络安全功能,如安全启动和密钥存储。这些MCU在单个芯片上集成了栅极驱动器、MCU、通信接口和电源,占板面积极小,实现了出色的集成度和系统成本,适用于各种汽车和智能三
[工业控制]
电动汽车充电时有哪些需要特别注意的事项?
1 为什么一开始就使用双向充电? 虽然双向充电益处多多,但随着更多的设备和系统连接到电网上,电池的经济性成为了核心问题。 当电网过载时会发生什么?专家认为,电从车辆流向电网这样的充电方式,是电池 “需求-响应”管理能力的体现。 双向充电器可调节两个方向的电流——电动车电池既可通过电网充电,也可在停电的情况下将电回充给电网,为家庭、办公室或电器供电。 换句话说,当电网不可避免地因天气或过载等因素出现故障时,车辆可担负起供电的重任。 2 电动车双向充电相关的最大设计挑战是什么? 为了实现其关键功用,双向充电器需要符合当地电网的要求,而这些要求在各地都不尽相同。 设计师的任务是确保通信设备和电路能够适应不同的电压(如230V,110
[嵌入式]
- 热门资源推荐
- 热门放大器推荐
最新嵌入式文章
更多精选电路图
更多热门文章
更多每日新闻
更多往期活动
厂商技术中心
随便看看