引言
CAN 是Controller Area Network 的缩写(以下称为CAN),是ISO国际标准化的串行通信协议。在当前的汽车产业中,出于对安全性、舒适性、方便性、低公害、低成本的要求,各种各样的电子控制系统被开发了出来。由于这些系统之间通信所用的数据类型及对可靠性的要求不尽相同,由多条总线构成的情况很多,线束的数量也随之增加。近年来,其所具有的高可靠性和良好的错误检测能力受到重视,被广泛应用于汽车计算机控制系统和环境温度恶劣、电磁辐射强和振动大的工业环境。
1 系统整体结构设计
如图1所示,存储系统主要包括以下模块:FPGA主控模块、CAN总线监听控制模块、数据压缩模块、SDRAM控制模块和单片机控制CH376模块。本文主要介绍存储部分,CAN总线监听控制模块不做介绍。图中,点画线内的部分均由FPGA控制。后端SD卡由MSP430单片机控制,SD协议芯片采用CH376。FPGA控制CAN总线控制芯片、CAN总线收发器从总线上获取数据,经过数据压缩模块压缩,存入SDRAM里。这里采用两种存储模式:一种是利用SDRAM存储的可覆盖性进行周期存储,具体存储周期由压缩率和SDRAM容量决定;另一种是直接存储,SDRAM作为缓存。当选择直接存储时,FPGA与单片机通信,利用FIFO给单片机发送数据,单片机控制CH376将数据存入SD卡(存储时间由SD卡容量决定)。
2 系统硬件设计
2.1 FPGA主控模块
FPGA选用Altera公司的Cyclone II系列芯片EP2C5T14418N,它具有内部资源丰富、速度快的特点。上电后,主控模块使能CAN总线监听控制模块、数据压缩模块、SDRAM控制模块。如果选择周期存储,则不使能单片机;若选择直接存储,则让单片机处于低功耗状态,当SDRAM有数据时FPGA把数据发给单片机,并使其控制CH376工作。
2.2 数据压缩模块
压缩算法采用LZW算法。该算法是一种基于字典的压缩算法,在数据的压缩过程中会根据输入的数据动态地建立一个字典。后续输入的数据都会在这个字典中进行匹配查找,根据查找是否成功决定压缩编码的输出。LZW压缩算法流程如图2所示。根据该流程,采用C语言设计压缩与解压缩软件以验证算法和硬件压缩的正确性,用Verilog语言编写了压缩代码,利用FPGA内部RAM资源建立字典。LZW压缩算法的硬件逻辑功能框图如图3所示。
2.3 SDRAM控制模块
SDRAM(同步动态随机存储器)是一种易失性存储器,以其容量大、价格低的特点得到越来越广泛的应用。但其控制逻辑复杂,需要周期性刷新操作、行列管理、不同延时和命令序列等。图4是SDRAM的控制状态转移图。
2.4 单片机控制CH376模块
CH376是一款国产文件管理控制芯片,用于单片机系统读写U盘或者SD卡中的文件。CH376内置了SD卡的通信接口、FATl6、FAT32以及FAT l2文件系统等固件,无需自己编写底层协议,控制简单,提供2 MB、24MHz的SPI设备接口,支持连接到单片机的SPI串行总线。CH376应用连接图如图5所示。
3 系统仿真与测试
程序编写完之后,利用Modelsim语言仿真软件对其进行仿真。ModelSim能提供友好的仿真环境,是单内核支持VHDL和Verilog混合仿真的仿真器。它采用直接优化的编译技术、Tcl/Tk技术和单一内核仿真技术,编译仿真速度快,编译的代码与平台无关,是FPGA/ASIC设计的首选仿真软件。硬件压缩与存储模块仿真如图6所示。仿真结果表明,硬件压缩与软件压缩完全符合。
结语
本文详细阐述了大容量存储系统系统的整体结构、硬件电路设计。利用“FPGA+单片机”作为存储控制器,采用基于LZW算法的数据压缩技术,以SDRAM作为周期存储和缓存,SD卡作为最终存储载体。实验结果表明,该存储系统可以很好地应用于车载信息记录仪。
关键字:车载 CAN总线记录仪 存储系统
引用地址:
车载CAN总线记录仪进行大容量存储系统的设计
推荐阅读最新更新时间:2024-05-03 00:21
日本预测:2015年车载锂电池成本将降2/3
近日,日本新能源产业技术开发机构(NEDO)发布预测,2015年车载锂电池成本将下降到3万日元/kWh(约2502人民币/kWh),比目前的价格下降2/3。 日本锂离子电池是电动汽车的核心部件,其价格在很大程度上决定着HEV、EV及PHEV的普及程度。目前锂离子电池的成本大致为10万~20万日元/kWh(约8342~16684人民币/kWh)。 测算结果乐观 NEDO以2010年锂电池价格10万~20万日元/kWh(约8342~16684人民币/kWh)作为参考,根据日本1995年~2010年消费类产品用锂电池的销售额与销售数量(电池单元数量)的变化得出结论:电池单元的销售价格在以约11%的速度下降
[新能源]
如何确保车载网络的强大性能?
对比汽车的过去、现在、将来,有一个明显的趋势:汽车已经成为带轮子的数据中心。在每辆汽车内部,来自安全系统、 车载传感器 、导航系统等的数据流量,以及对这些数据的依赖程度,都在不断迅速增长。 这在速度、容量、可靠性方面给车载网络(IVNs)带来了重大影响,其中的影响之一是,在高速低时延应用中,比如控制区域网(CAN)、FlexRay、本地互连网(LIN)、面向媒体的系统传输(MOST)和单边半波传输(SENT)之类的总线缺少所需的带宽。结果,这些传统标准正逐渐被信息技术(IT)领域的先前已验证的技术所取代。 当前的主要实例是汽车 以太网 ,它覆盖了电气和电子工程师(IEEE)开发的四项标准。目前,汽车以太网将与涵盖各种系统和子
[汽车电子]
苹果车载系统发布 汽车电子市场将超2000亿美元
苹果宣布即将推出旨在为iPhone驾驶者提供更安全、智能和有趣驾驶体验的“CarPlay”车载服务。
这一系统将在即将开幕的日内瓦车展上同外界正式界面,并将拥有包括语音通话、导航、音乐播放和通过语音或者触控方式接入信息服务的功能。消息指出,CarPlay可以利用汽车的原车显示界面运行,或者用户也可以通过长按方向盘上的语音控制按钮的方式来激活Siri,这同时也将大大增加驾驶途中的安全系数。
目前,法拉利、梅赛德斯-奔驰和沃尔沃这三家厂商的旗下车型将率先搭载Carplay服务,而包括宝马、福特、通用、本田、现代、捷豹、路虎、三菱、标志、雪铁龙、斯巴鲁、丰田和尼桑在内厂商的旗下车型也将在未来陆续搭载这一功能。
分析称,随着汽
[嵌入式]
车载天线的安装位置与方向性有何关系?
车载天线的安装位置与方向性有何关系?车载天线垂直安装好还是斜后向安装比较好?车载天线接收信号时带来噪声干扰如何解决? 车载天线的安装位置与方向性之间存在密切的关系。正确的安装位置和方向能够最大限度地提高信号接收质量,确保车辆内的通信设备能够正常运作。 首先,车载天线的安装位置应尽量远离其他金属物体,避免干扰信号的干扰。因为金属会反射信号,引起多径传播的问题,导致信号衰减和多径干扰。因此,车载天线的前、后玻璃的角度部位都是不宜安装的位置。 其次,车载天线的方向性也是非常重要的。车载天线的方向性表示它在不同方向上的接收能力不同。一般来说,天线的垂直安装比斜后向安装更好。垂直安装可以使天线的方向性更加集中,提高接收信号的灵敏度。而斜后向
[嵌入式]
车载移动异构无线网络架构及关键技术
计算机技术、通信技术和微电子技术的迅速发展,以及三者之间的相互渗透和融合奠定了通信网络技术的应用,推动了社会信息化的发展。近年来,车辆的爆发式增长和无处不在的信息需求也日益将通信网络和车辆紧密结合起来。人们在车辆移动过程中的通信服务需求日益增大,车载移动网络的研究已成为世界瞩目的焦点,同时也促进了车辆向智能化、网络化方向的发展。
传统的车辆通信网络通常只是针对于公路计费等用途设计的封闭式通信网络,新近的发展使得车辆网络支持车间自主通信从而互通安全信息。由于在网络架构方面的缺陷,现有的系统只能对高速行驶中的车辆提供局部区域内的信息交互。新一代车载网络将提供普适服务,包括:各种车辆安全消息传输、智能交通信息业务、多媒体数字业务等。
[嵌入式]
实现下一代车载信息娱乐系统
Posted 07/20/2023 by Mark Hoopes, Director of Automotive & Industrial Segment Marketing “汽车行业正在迅速发展,在新技术的加持下,尤其是区域架构的出现、ADAS传感器的优化以及在车辆中越来越多地使用高质量显示器,汽车也比以往任何时候都更加智能。制造商所急需能够帮助他们创新,同时可以在未来灵活更新的解决方案。” ——TECHnalysis Research总裁兼首席分析师Bob O’Donnell 市场对功能先进的电动和混合动力汽车的需求依然强劲,预计短时间内不会放缓。根据麦肯锡公司的数据,到2030年,全球汽车软件和电子市场预计
[汽车电子]
一种车载DVR整改案例分享
前言 车载DVR就是车载视频终端,俗称车载录像机它是随着数字视音频编码技术在车辆上应用而发展起来的一个新兴专用产品。该系统采用嵌入式处理器和嵌入式操作系统,将 H.264最新的音视频压缩/解压缩、 GPS全球定位技术、4G无线通讯、 USB通讯、先进车载电源管理、 GIS地理信息技术等,适合各种车型24小时监控。 同时,在主机上预留多种接口,可实现音频、视频同步、全球定位、无线音频传输,可与车载显示屏、 IC卡卡车、信号优先控制系统、客流统计系统等车载设备连接,可广泛应用于公交、长途客运、校车、工程车辆、公安执法车辆、火车、地铁、轮船等移动交通工具。 二****架构 由上图所示架构,可以推断: 1.电源DC-DC部分可能会
[嵌入式]
基于DSRC的车载无线通信系统平台设计
开展基于DSRC技术研究旨在提供一套先进的手段和科学的方法,能全方位地控制,有效地进行车辆和驾驶员辅助和交通管理,及时检测发现异常,减少交通事故的发生,提高驾驶和交通运输的安全性。
一、基于DSRC的车辆主动安全技术
专用短程通信(DSRC)技术是ITS的基础之一。DSRC系统包括车-路(V2R)通信和车-车(V2V)通信两种形式:车-路通信是车辆与路边基础设施的通信,属于移动节点与固定节点的通信,采用基于一跳的Ad Hoc网络模型;车-车通信是车辆间通信,采用基于多跳的Ad Hoc网络模型。两种通信方式被应用于不同领域。
1 车-路通信
车-路通信主要面向非安全性应用,以ETC系统为代表。车辆经过特定的ETC车道
[嵌入式]