直流电机在汽车应用领域十分常见,被广泛用于各种汽车系统,包括车门、后视镜、座椅和电泵。结构简单、成本低廉的特点使其成为汽车系统设计人员的首选解决方案。
直流电机有三个主要组件:产生磁场的定子、承载电机线圈的转子、向线圈传输电流的电刷。
将电源连至电机的两个接线端子后,电流将会流到转子线圈。如果线圈上的电流强度足以让电机和负载产生转矩,电机将会旋转。
电机通常采用PWM技术控制转速和转矩。此外,如果电机旋转方向在实际应用中必须变化,则必须改变电机两个端子上的电源电压。基于这些需求,采用四个开关按照要求将电源电压连到电机的两个接线端子上的H-桥是典型的双向直流电机控制解决方案。
图1:H桥配置。
意法半导体的L99H01是一个汽车电机驱动器芯片,集成四个栅驱动器来控制H桥内的四个外部N沟道MOSFET管。结构简单,驱动灵活,使其适用于各种汽车系统。
通过驱动器内部SPI接口,外部微控制器可读取诊断信息,还可以设置驱动器的多个功能,满足实际应用需求。
驱动器内置一个两级电荷泵,这样设计有多个好处。以较低的输入电压驱动H桥外部MOSFET管,尽可能节省外部组件(只需三个电容),以100%占空比驱动电机。此外,电荷泵的输出电压还可用于驱动电池极性接反保护电路的附加MOSFET管。
图2:L99H01框图和应用示意图
因为电机在驱动电路内产生感性负载,为尽可能降低耗散功率,在应用PWM控制技术时,必须为电机电流设计正确的闭合回路。L99H01让设计人员尽可能灵活地选择续流回路策略。此外,通过正确选择续流回路,再配合一个外部微控制器,驱动器可以在实际应用中进行功能性安全测试。
图3:L99H01续流方法选择
通过使用L99H01内部的一个或两个电流检测放大器(CSA),可以测量流经H桥的电流。这些放大器有很多特别的地方。因为放大器输入接受高压,所以可在接地端、电源线或直接串联电机测量电流,让用户满足不同的需求和策略要求。此外,可通过SPI串口设置放大器的增益,为应用开发带来更高的灵活性。此外,还可对放大器执行失调校正,降低放大器本身失调对电流测量结果的负面影响。
内部看门狗定时器监视外部微控制器,提升应用层面的安全性。万一看门狗发现微控制器异常,L99H01则禁用内部MOSFET栅驱动器。
L99H01防范潜在危害性事件入侵驱动器和系统。该产品具有欠压保护以及可设置过压保护(通过SPI)功能。如果在电源端发现这些事件,则栅驱动器将被禁用,并通过SPI接口上报给微控制器。
假如电机的接线柱意外对地短路或对电源短路,L99H01则监视桥上每个被激活晶体管的漏源电压,以保护外部MOSFET管。如果漏源电压高于预设阈值且持续时间大于内部滤波时间,则驱动器关闭受影响的晶体管,并通过SPI串口上报事件。用户可按实际照应用情况(即MOSFET电阻和流经电桥的电流)调整电压检测阈值,通过SPI接口从四个数值中选择一个设为阈值。
当同一半桥内的高低边MOSFET换向时,在一个晶体管的关断与另一个晶体管的导通之间引入死时非常重要,否则,两支晶体管可能同时导通,引起从电源流向接地方向的逆流。 用户可通过SPI接口按照实际需求选择多个阈值。当开关同一桥臂上的晶体管时,L99H01自动启用可设置的死时。
作为一个深入保护机制,L99H01可检测内外部热事件,并做出相应的反应。该产品可检测内部过热初期状况,并通过SPI接口向外部微控制器报警。这样,微控制器可采取一些应对措施,以降低驱动器本身和系统的温度。假如芯片内部温度进一步上升,则芯片进入过热关断模式,禁用栅驱动器和电荷泵。
此外,外部温度传感器(如灯条)可连至 L99H01的专用输入端。当这个引脚上的电压降至阈值以下时,驱动器关闭栅驱动器,以保护电桥。按照当前应用设计的特性,用户可通过SPI选择阈压。值得一提的是,当施加外部数字信号时,这个输入可用于禁用栅驱动器。
关键字:TP2763 L99H01 直流电机 电桥驱动器
引用地址:TP2763 L99H01:一个灵活的汽车直流电机电桥驱动器
直流电机有三个主要组件:产生磁场的定子、承载电机线圈的转子、向线圈传输电流的电刷。
将电源连至电机的两个接线端子后,电流将会流到转子线圈。如果线圈上的电流强度足以让电机和负载产生转矩,电机将会旋转。
电机通常采用PWM技术控制转速和转矩。此外,如果电机旋转方向在实际应用中必须变化,则必须改变电机两个端子上的电源电压。基于这些需求,采用四个开关按照要求将电源电压连到电机的两个接线端子上的H-桥是典型的双向直流电机控制解决方案。
图1:H桥配置。
意法半导体的L99H01是一个汽车电机驱动器芯片,集成四个栅驱动器来控制H桥内的四个外部N沟道MOSFET管。结构简单,驱动灵活,使其适用于各种汽车系统。
通过驱动器内部SPI接口,外部微控制器可读取诊断信息,还可以设置驱动器的多个功能,满足实际应用需求。
驱动器内置一个两级电荷泵,这样设计有多个好处。以较低的输入电压驱动H桥外部MOSFET管,尽可能节省外部组件(只需三个电容),以100%占空比驱动电机。此外,电荷泵的输出电压还可用于驱动电池极性接反保护电路的附加MOSFET管。
图2:L99H01框图和应用示意图
因为电机在驱动电路内产生感性负载,为尽可能降低耗散功率,在应用PWM控制技术时,必须为电机电流设计正确的闭合回路。L99H01让设计人员尽可能灵活地选择续流回路策略。此外,通过正确选择续流回路,再配合一个外部微控制器,驱动器可以在实际应用中进行功能性安全测试。
图3:L99H01续流方法选择
通过使用L99H01内部的一个或两个电流检测放大器(CSA),可以测量流经H桥的电流。这些放大器有很多特别的地方。因为放大器输入接受高压,所以可在接地端、电源线或直接串联电机测量电流,让用户满足不同的需求和策略要求。此外,可通过SPI串口设置放大器的增益,为应用开发带来更高的灵活性。此外,还可对放大器执行失调校正,降低放大器本身失调对电流测量结果的负面影响。
内部看门狗定时器监视外部微控制器,提升应用层面的安全性。万一看门狗发现微控制器异常,L99H01则禁用内部MOSFET栅驱动器。
L99H01防范潜在危害性事件入侵驱动器和系统。该产品具有欠压保护以及可设置过压保护(通过SPI)功能。如果在电源端发现这些事件,则栅驱动器将被禁用,并通过SPI接口上报给微控制器。
假如电机的接线柱意外对地短路或对电源短路,L99H01则监视桥上每个被激活晶体管的漏源电压,以保护外部MOSFET管。如果漏源电压高于预设阈值且持续时间大于内部滤波时间,则驱动器关闭受影响的晶体管,并通过SPI串口上报事件。用户可按实际照应用情况(即MOSFET电阻和流经电桥的电流)调整电压检测阈值,通过SPI接口从四个数值中选择一个设为阈值。
当同一半桥内的高低边MOSFET换向时,在一个晶体管的关断与另一个晶体管的导通之间引入死时非常重要,否则,两支晶体管可能同时导通,引起从电源流向接地方向的逆流。 用户可通过SPI接口按照实际需求选择多个阈值。当开关同一桥臂上的晶体管时,L99H01自动启用可设置的死时。
作为一个深入保护机制,L99H01可检测内外部热事件,并做出相应的反应。该产品可检测内部过热初期状况,并通过SPI接口向外部微控制器报警。这样,微控制器可采取一些应对措施,以降低驱动器本身和系统的温度。假如芯片内部温度进一步上升,则芯片进入过热关断模式,禁用栅驱动器和电荷泵。
此外,外部温度传感器(如灯条)可连至 L99H01的专用输入端。当这个引脚上的电压降至阈值以下时,驱动器关闭栅驱动器,以保护电桥。按照当前应用设计的特性,用户可通过SPI选择阈压。值得一提的是,当施加外部数字信号时,这个输入可用于禁用栅驱动器。
上一篇:新能源汽车的关键技术:BMS的现状与未来
下一篇:法拉第未来逆电器专利解析
推荐阅读最新更新时间:2024-05-03 00:27
无刷直流电机和有刷直流电机的区别
无刷直流电机和有刷直流电机是两种不同类型的直流电机。 有刷直流电机的工作原理是利用电荷和磁场之间的相互作用来产生旋转运动。电机中有一组刷子,可以通过交替改变电流的方向来改变转子北极和南极的极性,从而使转子不断旋转。 无刷直流电机的工作原理是通过电枢(通常是三相交流电)和定子(由一组磁铁构成)之间的相互作用来产生旋转运动。转子上有一组永磁体或电极,当电枢中的电流流过时,它们产生的磁场就会与定子中的磁场相互作用,从而使转子不断旋转。无刷直流电机无需刷子,因此具有更高的效率和更长的使用寿命。 无刷直流电机和有刷直流电机的功能特点 无刷直流电机和有刷直流电机都是直流电机,但它们在结构上有所不同,因此具有一些不同的功能特点。 无
[嵌入式]
最简单直流电机调速 如何增加直流电机的转速
最简单直流电机调速 最简单的直流电机调速方法是通过改变电源电压来控制电机转速。这种方法的原理是,电机转速与电源电压成正比,当电源电压增大时,电机转速也会增加。 一般情况下,可以通过改变电阻来改变电源电压。例如,在直流电机电源的正极和电机之间串联一个可变电阻,当电阻减小时,电源电压增大,电机转速也会增加。这种方法简单易行,但是调速精度不高,且能耗较大。此外,在实际应用中,也可以采用其他更加先进的调速方法,如PWM调速、开环调速、闭环调速等,以达到更高的调速精度和效率。 如何增加直流电机的转速 增加直流电机的转速可以通过以下方法实现: 提高电源电压:直流电机的转速与电源电压成正比,因此,提高电源电压可以
[嵌入式]
需要使用直流电机调速器的场合
需要使用直流电机调速器的场合有以下几种: 1.需要较宽的调速范围; 2.需要较快的动态响应速度; 3. 加、减速时需要自动平滑的过渡过程; 4.需要低速运转时大扭矩; 5.需要较好的动态硬特性,能将过载电流自动限止在设定电流范围内。 以上五点也是直流调速器的应用特点。
[嵌入式]
直流电机的正反转控制电路图解
今天我们来看 一下直流电机的正反转控制电路,首先我们分析一下电路图。 电路图 三部分 电路图分为三部分,整流电路主电路和控制电路。整流电路我们要根据电机选择合适的整流变压器,直接单相电输入直流电输出。 这种直流电机只需要把供电的正负极对调就可以实现正反转,所以我们可以用两个接触器互锁实现控制。电机的电源线在两个接触器上要对调一下,这样输出端才能实现正反转控制。 按下SB1 图中的红色线为电流的走向,这是按下正转按钮SB1的效果,按下的瞬间KM1线圈得电,KM1的辅助常闭点断开使得KM2无法工作,KM1和KM2形成电气互锁。KM1自身的常开点闭合给线圈供电,所以松开按钮SB1以后,KM1自锁持续工作。电机的电源接的是
[嵌入式]
空心杯电机 VS 传统直流电机的区别是什么
(一)空心杯 电机 :人形 机器人 灵巧手的核心零部件 灵巧手是人形机器人执行动作的最终零件,十分重要且复杂,对电机性能要求较高。灵 巧手作为机器人实现操作的终端工具,十分重要,其设计高度仿人手,结构比较复杂, 面临的最大难题是空间极小而驱动自由度极多,需要配备功率密度高,体积小且控制精 度高的电机。 空心杯电机与灵巧手关节适配性高, 特斯拉 Op ti mus 选用其作为动力源。空心杯电机具 有功率密度高、能量转化效率高、响应快,运行平稳等特点,与灵巧手的需求高度适配。 特斯拉机器人“灵巧手”使用较为经典的六电机驱动方式,和人手一样同样使用 5 个手 指,拥有 11 个自由度,拇指采用双电机驱动弯曲和侧摆,其它四指各用一个电
[嵌入式]
L6234无刷直流电机控制-简易版
我本来今天想来一发源码分析的,但是我手头没有鼠标,我一想截图那么多就算了,我发一个 电机 驱动的代码就行。 SimpleFoc-云台电机2804+AS5600 SimpleFoc-原理图(STL6234+INA240) 所以一个输出要两个接口控制 L6234 驱动器有 3 个输出:OUT1、OUT2 和 OUT3。每个输出由 2 个引脚控制:输入 (IN) 和使能 (EN),例如 OUT1 由 IN1 和 EN1 控制。下图显示了每个半桥的控制逻辑: 逻辑电平 输出电平 另外这个原理图看左边,为了方便可以把使能脚直接都拉低 这样使用三个引脚 模拟 也是可以的 1.L6234 三相 电机驱动器 2
[嵌入式]
C51---15 LED呼吸灯&直流电机调速
LED呼吸灯 代码 通过LED亮灭延迟时间的变化,实现LED呼吸灯效果 #include REGX52.H sbit LED=P2^0; void Delay(unsigned int t) { while(t--); } void main() { unsigned char Time,i; while(1) { for(Time=0;Time 100;Time++) //改变亮灭时间,由暗到亮 { for(i=0;i 20;i++) //计次延时 { LED=0; //LED亮 Delay(Time); //延时Time LED=1;
[单片机]
基于AT89S52的多功能智能小车设计
随着计算机、微电子、信息技术的快速发展,智能化技术的开发速度越来越快,智能度越来越高,应用范围也得到了极大的扩展。智能小车作为移动式机器人中的一个重要分支,具有环境感知、规划决策、自动行驶等功能,是智能化技术中一个典型的例子。设计者可以通过软件编程,让小车在预先设定的模式中实现行进、寻迹、避障等精确控制,无需人工干预,当有特殊需要或在出现故障的情况下还可以对小车进行远程遥控,可以应用于科学勘探等用途,具有广阔的发展前景。 1 系统总体设计框图 本设计中,智能小车是由主控制模块、电机驱动模块、循迹模块、避障模块、遥控模块、声控模块、光控模块、电源模块和其他外围电路组成,其总体硬件结构框图如图1所示。 2 系统硬件设计
[单片机]