Turbo PMAC面向复杂运动数控系统的开放特性研究

发布者:真诚相伴最新更新时间:2016-09-13 来源: e-works关键字:Turbo  PMAC  数控系统  控制器 手机看文章 扫描二维码
随时随地手机看文章
1 引言

  目前,比较现实的实现开放式数控系统的途径是“PC +多轴控制器”,在这种结构中, PC机处理非实时部分,实时控制部分由多轴控制器来承担,形成多级分布式控制模式。这样架构出来的数控系统既具有前端PC机的柔性,又具有专用CNC系统的稳定性和可靠性。在国内市场上, 性能价格比较高的当属基于PMAC ( Programable Multi2axes Controller)多轴运动控制器的开放式控制系统。由于PMAC多轴运动控制器优异的轨迹跟踪能力和精度,在很多高性能的数控系统和研究项目中选用它构建开放式控制系统

  Turbo PMAC多轴运动控制器是PAMC系列的升级版本,保持了PMAC的优良性能,其特有的开放的运动学计算特性,更适合于构建面向复杂运动的开放式数控系统,如并联机床和机器人数控系统。

2 Turbo PMAC的性能和开放特性

  Turbo PMAC是美国Delta Tau公司在PMAC的基础上推出的基于工业PC和W indows操作系统的开放式多轴运动控制器,采用了更高速度的DSP56300 系列数字信号处理器,提供全新的高性能技术和Win2dows平台, 满足用户在运动控制各个领域的需要。Turbo PMAC可同时控制1~32个轴,实现多轴联动控制。Turbo PMAC既可单独执行存储于控制器内部的程序,也可执行运动程序和PLC程序。它可以自动对任务优先级进行判别,从而进行实时多任务处理。在硬件结构上,只需通过适当的参数设置和使用不同的接口卡, Turbo PMAC便能与各种伺服系统匹配,可以方便地连接各种模拟或数字伺服驱动器。Turbo PMAC与PC机的通讯有三种方式:串行、总线和双端口RAM方式,可以按照实际硬件条件和需要选择最适合的方式。Turbo PMAC可以在PC XT/AT、VME、STD 总线上运行,由此提供了多平台的支持特性,同时也使同一控制软件可以在不同的硬件平台上运行,这种特性体现了Turbo PMAC 在硬件结构上的开放性。

  在软件结构上, Turbo PMAC提供了Windows平台下的驱动程序,支持VC + +、VB、Delphi、C + +Builder等编程语言环境,实现W indows环境下的人机界面设计。此外, Turbo PMAC也支持DOS环境下控制程序的开发,由此可对Turbo PMAC进行高实时性控制,为开发高性能的嵌入式数控系统提供了条件。TurboPMAC对多种程序设计语言和多种操作系统平台的支持,体现了Turbo PMAC对开发环境的开放性。Turbo PMAC提供了强大的运动控制功能,如直线插补、圆弧插补、样条曲线插补等模式,用户也可以通过这些基本模式定制出自己合适的运动模式。TurboPMAC支持数控G代码和M代码指令控制,支持刀具补偿功能,可方便地开发机床数控系统。Turbo PMAC采用了带陷波滤波器的P ID算法进行电动机的伺服控制,能有效地克服电动机运行中的机械振动,该伺服环引入了速度和加速度前馈,进一步提高了伺服控制中的轨迹跟踪精度和加速性能。Turbo PMAC内含了逻辑功能强大的可编程控制器( PLC) ,可以和运动控制程序密切配合实现外部设备的开关量( I/O)控制。

  同PMAC系列多轴运动控制器相比, Turbo PMAC除运算速度和内存增加外,还增加了新控制特性,主要有:先进的加速超前预测,内建的正向运动学和逆向运动学计算能力,三维刀具半径补偿功能,在线改变运动目标,多端口连续通讯,为每个电动机制定正弦转换表,可单独选择电动机的P ID伺服控制算法或使用外部定义的算法,大大增加了同步M变量缓冲区,为每个坐标系设置两个伺服速率定时器,运动轨迹反求能力。其中,正向/逆向运动学计算功能和伺服控制算法定义功能,体现了Turbo PMAC运动平台在面向用户的开放性方面向前跨了一大步,使用户能灵活地在该平台上配置自己的运动算法,快速开发复杂数控系统的应用产品。
 

3 Turbo PMAC开放的运动学计算特性

  对于面向复杂运动的控制系统,如并联机床控制和多轴机器人控制,尽管PMAC仍然可以作为一个优秀的控制平台,但主要是利用了PMAC的伺服控制功能和多轴联动控制功能,而那些高性能的辅助功能很难直接使用,较典型的就是G代码和刀具补偿等功能,这就增加了产品的开发难度。在基于Windows平台上的应用,甚至会造成在线实时控制失败,究其原因,主要是因为PMAC的辅助功能是以笛卡尔坐标为基础,而并联机床和机器人的实际控制轴一般不是笛卡尔几何形状,目标运动轨迹与驱动轴关节坐标系为非线性关系,因此运动轨迹规划之后,还需要上位机完成粗插补、坐标运动转换和虚、实轴变换等运动学运算,形成实际轴的密化控制数据,在非实时操作系统平台下(如W indows)大量密化的数据传输成为实时控制的难点和瓶颈。在并联机床数控系统开发中,由于不能直接使用PMAC提供的辅助功能,需要开发者编制对标准G代码数控程序的解释程序和刀具补偿程序,会大大降低系统开发效率和产品的可靠性。上述存在的问题在Delta Tau 公司开发的新一代多轴控制器Turbo PMAC中得到了较好的解决。

  Turbo PMAC提供了一种机制,使用户很容易实现复杂的运动学运算。当刀尖坐标和驱动轴关节坐标系之间为非线性关系时,运动学计算功能变得尤为重要。典型例子就是并联机床和机器人系统。在并联机床控制中,只要将对应机构的运动学程序嵌入到TurboPMAC控制器中, Turbo PMAC可以根据刀尖轨迹自动按照给定的运动学算法计算出实际驱动轴的位置坐标。Turbo PMAC的这种能力,允许在笛卡尔坐标系(虚轴坐标系)对刀尖轨迹编程,而不用考虑实际控制轴的坐标形态。Turbo PMAC的运动算法程序编制方法简单,与PLC程序语法规则一致,该程序放在TurboPMAC的专用缓冲区中,作为子程序供运动程序调用。Turbo PMAC中运动学计算的定义与机构学中定义的基本思想一致。正向运动学运算是指,以驱动轴关节坐标作为输入量,计算出刀尖的轨迹位置坐标。在并联机床控制中,通过正向运动学计算可以获得控制初始的刀尖位置,也可以在加工过程中报告刀尖轨迹位置。正向运动学运算往往无封闭解,因此TurboPMAC支持迭代处理,以解决复杂的正向运动学计算。逆向运动学运算是指,以刀尖位置坐标作为输入,计算出驱动关节的位置坐标。在并联机床控制中,刀尖的每个编程端点都需要进行逆向运动学计算。特别指出的是,在非线性程度很高的并联机床控制中,如只对编程端点进行逆解运算,则意味着所有插补均在关节空间中进行,一般情况下刀尖轨迹不会是一条直线。因此,必须首先对编程段进行粗插补(即编程段细分) ,对每一个细分段再进行逆解运算,而在关节空间只进行精插补,则刀尖轨迹误差会很小,甚至可忽略不计。这种处理方式在Turbo PMAC中得到支持,通过控制分段时间变量来定义粗插补周期,实现在直线和圆弧运动模式下基于时间分割的粗插补功能。

4 结论

  Turbo PMAC的开放特性为开发复杂的数控系统提供了一个良好的运动控制平台,通过其开放的运动学运算功能封装了设备结构的复杂性,并可以直接使用Turbo PMAC提供的数控G代码和刀具半径补偿等辅助功能,从而减少上位机计算量和与Turbo PMAC的通讯数据量,提高控制的实时性能,可以降低开发成本,使开发者把更多精力投入到设备控制功能和性能研究中。可以预见, Turbo PMAC将在并联加工机床和机器人控制领域得到广泛的应用,并可为我国自行研制的高性能、开放性多轴运动控制器提供技术参考。

关键字:Turbo  PMAC  数控系统  控制器 引用地址:Turbo PMAC面向复杂运动数控系统的开放特性研究

上一篇:缸体立式双轴双进给数控珩磨机液压系统的研制
下一篇:PRS-XY混联加工平台开放式数控系统

推荐阅读最新更新时间:2024-05-03 00:39

操作12864(ST7920控制器
引脚部分查看中文的12864介绍,下面这些可以在ST7920的英文数据手册里查到。 Function Description 部分介绍工作方式、存储器、操作方法。 Instructions 部分介绍指令。 按照并行或串行的 Timing Diagram 来操作,注意数据何时有效。 查看初始化的流程图,按照Function set、Display ON、Display clear的顺序初始化,可以没有 Entry mode set 这一步。 注意 1.串行方式没有读取操作,并行读是要Dummy read的,4位并行可以只连高4位数据线。 2.操作CGRAM和GDRAM需要在基本指令和扩展指令间切换。设定完哪个RAM的地址后,接下来
[单片机]
I2S音频总线学习(三)S3C2440的I2S控制器
一、I2S控制器结构框图 S3C2440A的Inter-IC Sound (IIS)总线接口作为一个编解码接口连接外部8/16位立体声音频解码IC用于迷你碟机和可携式应用。IIS总线接口支持IIS总线数据格式和MSB-justified数据格式。该接口对FIFO的访问采用了DMA模式取代了中断。它可以在同一时间接收和发送数据。 图1 结构框图 总线接口,寄存器组和状态机(BRFC):总线接口逻辑和FIFO 访问由状态机控制。 5 位双预定标器(IPSR):一个预定标器用于IIS 总线接口的主时钟发生器,另外一个用作外部编解码时钟发生器。 64 位FIFO(TxFIFO 和RxFIFO):在发送数据传输时,数据写到T
[单片机]
I2S音频总线学习(三)S3C2440的I2S<font color='red'>控制器</font>
赛普拉斯半导体宣布推出一款全新USB Type-C控制器
赛普拉斯半导体公司近日宣布推出一款全新USB Type-C控制器,具备电力传输(PD)功能,从而简化了dongle、电源适配器和充电宝等USB Type-C附件的设计。全新EZ-PD CCG3控制器提供无与伦比的高集成度,利用单芯片解决方案取代了多个分立的元件,从而最大限度地降低了物料成本,简化了系统设计。 全新EZ-PD CCG3控制器支持3.3-V 至20-V的直流电压运行,集成了独立20-V VBUS栅极驱动器用于支持供应商和消费者电源通路,两个1-W VCONN场效应晶体管(FET)为USB Type-C电缆提供电源,以及一个USB Billboard控制器向USB主机通知支持的替代模式和故障信息。内置高压稳压器
[嵌入式]
赛普拉斯半导体宣布推出一款全新USB Type-C<font color='red'>控制器</font>
基于单片机的LED轮廓显示控制器设计方案
LED护栏管又名丽得管,是一种先进的LED装饰照明灯饰产品。以红、绿、蓝3种颜色的LED作为光源,使用了微电子和数码技术,能进行色彩追逐,色彩过渡渐变,灰度变化和七色变化,能产生十分丰富的色彩变幻效果。该产品外形采用一次成型,灯管和底座浑为一体,防水性更好,重量更轻。广泛适用于酒吧、舞厅、大厦、广场、桥梁、栏杆等各种大型建筑装饰,全彩管更可以在一个大范围的区域实现灯光群控和显示动态节目,适合大型主题夜景。 文中提出了一种主从式单片机的LED轮廓显示屏解决方案,该设计方案利用STC单片机自身的FLASH ROM和RAM,外部无需任何存储电路,电路结构简单。可实现交流同步显示,驱动当前LED亮化市场中的多款LED护栏管与点光源器件。
[单片机]
基于单片机的LED轮廓显示<font color='red'>控制器</font>设计方案
NCP1927组合控制器:平板电视开关电源设计的理想选择
随着平板电视的迅速发展,中国平板电视市场已进入成熟期,平板电视的高效且功能强大的开关电源需求也在显著增加。安森美半导体提供的NCP1927功率因数校正(PFC)及反激组合控制器电源管理芯片,能够用于开发紧凑及高能效平板电视开关电源,配合纤薄平板电视设计潮流及帮助推动节能降耗。 配合平板电视开关电源设计要求从行业的发展来看,CRT向平板电视的转变意味着能源消耗的增加。以液晶电视为例,液晶屏本身不发光,必须要用后面无数的灯管(背光模组)均匀照亮整个荧屏,再通过信号和液晶物质的流动显示出影像。要驱动这些灯管,并且让荧屏保持较高的亮度和分布,就需要消耗大量的电力。 在国内,目前彩电行业沿用的节能标准是《彩色电视广播接收机能效限定值
[电源管理]
NCP1927组合<font color='red'>控制器</font>:平板电视开关电源设计的理想选择
基子ATmega103微控制器的家庭信息终端的设计
摘要:介绍了以Atmegal03为主控芯片的家庭信息终端在小区智能化建设中的应用。详细阐述了Atmegal03微控制器与触摸屏和nRF401无线数据收发芯片之间接口应用的软件与硬件技术要点。 小区智能化建设在国内历经几年的发展,已经形成了一系列标准,它们的出现了满足了不同收入阶层对住房智能化的要求。而室内终端作为小区智能化建设中一个重要环节,也随着电子技术的发展和人们对住宅智能化要求的提高逐渐发展成一个集多种功能为一体的综合性信息服务处理平台。 传统室内终端只能在用户室内进行简单的安防和电器的控制,已经不能满足人们对住宅智能化的要求。而家庭信息终端HIT(Home lnformation Termination)在具有安防
[单片机]
基子ATmega103微<font color='red'>控制器</font>的家庭信息终端的设计
直接测量微控制器总线时钟的程序
  飞思卡尔(Freescale)公司的HC08与最新HCS08 微控制器 系列都是多功能的外设模块。它们使用的时钟发生器也没有特殊之处,可以是内部时钟(省出了I/O脚),也可以是外接晶体或振荡器。一旦选定了时钟源,就有多种选择控制最终的总线频率。例如,为MC9S08GB微控制器连接一个32768Hz晶体就可以使用FLL(锁频环)生成高达18.874MHz的多个总线频率。选择时钟源、分频器和FLL设置固然能实现多功能性,但也带来了复杂性。   一旦编写完 总线时钟 初始化例程,可能希望先验证一下总线是否确实以期望的速度运行,然后再进入项目的其它部分。本设计实例的例程,可在任何I/O端口输出一个精确等于1/10总线速度
[测试测量]
直接测量微<font color='red'>控制器</font>总线时钟的程序
英飞凌将亮相2024国际嵌入式展,集中展示面向绿色未来的创新半导体和微控制器解决方案
【2024年4月8日,德国慕尼黑讯】 低碳化和数字化是当今时代人们面临的两大核心挑战,人类社会需要依靠创新和先进的技术,才能破除挑战、推动转型进程。在德国纽伦堡举办的2024国际嵌入式展(Embedded World 2024)上,英飞凌科技股份公司将展示其创新的半导体解决方案如何支持与推动低碳化和数字化发展 。特别是微控制器在其中扮演着重要的角色,微控制器能够为各种应用提供核心技术支撑,其用途广泛涵盖电动汽车、可再生能源系统、智能家居和工业自动化等领域。有鉴于此,英飞凌将展示其采用最新技术、融合各种创新功能(如增强的安全性和高精度)设计的高质量微控制器,该微控制具有出色的性能,同时能够实现低功耗。 英飞凌将亮相2024国际
[半导体设计/制造]
英飞凌将亮相2024国际嵌入式展,集中展示面向绿色未来的创新半导体和微<font color='red'>控制器</font>解决方案
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved