CAN总线丢帧案例诊断经验

发布者:bin0990最新更新时间:2016-09-18 来源: eefocus关键字:CAN总线  丢帧案例  诊断经验 手机看文章 扫描二维码
随时随地手机看文章
一、现场通讯故障描述


用户现场为一煤安监控网络,节点包括一个主站设备、两个分站设备,主站设备对分站设备进行轮询式数据查询。故障出现时发现分站上传的数据出现缺失现象。致远电子工程师将专业工具——CANScope分析仪接入故障网络捕获数据,然后进行分析。现场情况如图1所示。


图1  现场测试图片

二、对故障通讯网络快速体检

监控系统上电工作后,记录一段时间数据,通过【报文帧统计功能】分析,此次测试样本为135个帧,成功报文119个,正确率为88.15%。错误帧类型主要包括CRC定界符错误、帧结束错误、应答定界符错误、数据场填充错误。使用CANScope分析仪轻松捕获到网络中的错误数据,如图2所示。


图2  报文帧统计结果

三、数据丢失分析

由于用户采取轮询的方式查询分站数据,存在固有的数据周期,通过【流量分析功能】可以发现,未丢数据的周期中,包含7条有效报文,如图3所示。


图3  未丢数据周期

丢数据的周期中出现了红色的错误帧,如图4所示。有效报文数量=周期报文总数7-错误帧数量。我们都知道在正常模式下CAN总线中出现错误帧后底层会实现自动重发,保证报文不会因为错误帧而丢失,然而在本网络中这一机制未能实现。通过检查软件,发现软件工程师在CAN控制器初始化代码中禁用了重发功能,导致错误帧不能重发。


图4  丢数据周期

四、错误帧分析

通过修改代码解决了数据重发的问题,但是网络中偶尔冒出的错误帧仍然是工程师的一块心病,错误重发机制的使能仅仅是治标不治本,那么究竟是什么原因导致CAN网络中出现错误帧呢?这就需要借助CANScope的信号质量分析功能。通过观察错误帧的波形我们发现,CAN信号上存在很严重的共模干扰,使得CAN_H和CAN_L上的单线波形畸变严重,如图5所示。


图5  波形分析

选取一条错误帧使用【FFT分析功能】进行分析可以看到该错误帧信号上的频域特性,其中在27KHz频点上存在很强的能量,幅值甚至达到了1.38V,如图6所示。我们知道CAN总线的显隐性电平的压差很小,1V左右的干扰很容易导致电平识别错误,出现错误帧。


图6  FFT分析

这一干扰是否具有统计特性呢,使用【干扰统计功能】针对所有样本数据做干扰频点强度排序,可以发现干扰最强的频点集中在27KHz附近,如图7所示。因此在CAN网络附近确实存在这样一个干扰源。经过工程师们的排查发现,这一干扰频率与开关电源的开关频率最吻合,由于所有CAN节点未做隔离导致电源串扰,引发错误帧。


图7  干扰统计

五、总结

使用致远电子的CANScope分析仪为何能够标本兼治地解决CAN网络通讯故障呢?

这是因为CANScope总线综合分析仪是一款综合性的CAN总线开发与测试的专业工具,集海量存储示波器、网络分析仪、误码率分析仪、协议分析仪及可靠性测试工具于一身,并把各种仪器有机的整合和关联;重新定义CAN总线的开发测试方法,可对CAN网络通信正确性、可靠性、合理性进行多角度全方位的评估;帮助用户快速定位故障节点,解决CAN总线应用的各种问题,是CAN总线开发测试的终极工具。
关键字:CAN总线  丢帧案例  诊断经验 引用地址:CAN总线丢帧案例诊断经验

上一篇:CAN总线简述
下一篇:CAN 总线波特率计算

推荐阅读最新更新时间:2024-05-03 00:39

技术文章—CAN总线同步跳转宽度的作用
CAN总线一直以来以稳定、容错性高而著称。要想达到这样的效果,其独特的同步机制是非常重要的一点,本文将为大家讲解一下CAN总线的同步机制以及SJW 的作用所在。 CAN总线的同步共有两种方式:硬同步和重同步。 硬同步 在总线刚刚从空闲状态中走出来的时候,在帧头的位置都会进行一次同步。此时所有的节点位时间重新开始,就像所有的运动员都再一次回到了起跑线上。这种同步方式被称作硬同步。 重同步 硬同步时只是在有帧起始信号时起作用,无法确保后续一连串的位时序都是同步的,这个时候重同步就到了发挥作用的时候。具体来说,CAN总线的一个位时间中包含两个缓冲段BS1和BS2: 在两个缓冲段中间的位置,即是读取总线
[汽车电子]
技术文章—<font color='red'>CAN总线</font>同步跳转宽度的作用
Linux环境下实现基于ARM9的CAN总线通信
1. 引言 CAN(Controller Area Network)总线最早是由德国BOSCH公司提出,实现汽车环境中的微控制器通讯,在车载各电子控制装置ECU之间交换信息,形成汽车电子控制网络。由于其具有成本低,实时性好,容错性高,设计灵活等特点,目前已被广泛的应用于各种工业领域,被公认为是最有前途的现成总线之一。与此同时,随着ARM(Advanced RISC Machines)芯片及嵌入式Linux操作系统的成熟与完善,使得CAN通信的开发更为便利,应用更为广泛。本文就将从硬件,软件两方面介绍一种在Linux环境下实现基于EP9315的CAN总线通信方式。 2. 硬件介绍及其接口实现 本设计选用的是Cirrus Logic公
[单片机]
Linux环境下实现基于ARM9的<font color='red'>CAN总线</font>通信
CAN总线及其在PLC上的应用
引言 数字电子信息技术的飞速发展对全世界的制造业日益起着巨大的推动作用,使得制造业的各种设备的设计越来越电子化,数字化,网络化,ECCT产品是艾默生CT推出的一款专门应用于纺织行业的具有CAN总线协议的专用PLC控制器,它不仅满足了纺织的基本I/O工艺需求,更是把CAN总线协议完美地融合进去,使用户很轻易地把系统的各种设备通过CAN协议进行连接,本文介绍了CAN总线功能在艾默生CT PLC上的应用。 CAN总线基础知识简介 CAN总线(CONTROLLER AREA NETWORK,控制器局部网络)由德国BOSCH公司首先提出来的,CAN总线是目前工业界广泛应用的总线。其特点简要归纳如下: 1)CAN控制器工作于多主站方式
[工业控制]
<font color='red'>CAN总线</font>及其在PLC上的应用
基于CAN总线的智能继电器研究
0 引言 过去的几十年里,在很多电气设备中,比如车辆、舰船、飞机等中的电气用电设备,它们一直采用保险丝盒断路器等被动防护装置,致使无法故障预警,故障诊断起来也比较困难,严重影响了设备的整体性能;同时,由于总线类设备能提供信息查询、故障记录、参数保护等功能。因此在一些底层器件中引入总线技术,能更方便用户配置系统,就像设备中多了很多对眼睛,可以很好地把握设备的工作情况。所以研发具有预警和诊断功能的新器件势在必行。 本文中主要是在继电器中引入总线技术,使得继电器具有总线通信功能。通过总线继电器控制模块可以将具有智能化、网络化功能的电器节点模块有机的组合起来,构成一种新的电气负载管理系统,即针对系统发出的指令进行逻辑切换和信息反馈
[嵌入式]
地铁屏蔽门CAN总线故障排查流程
摘要:地铁是人们出行的重要交通工具,随着地铁线路全面铺设,人们对于地铁的安全性能越来越关注,尤其是地铁屏蔽门的可靠性,那么在复杂的地铁控制系统中,如何进行地铁屏蔽门CAN总线故障排查呢?本文将做详细介绍。 地铁屏蔽门控制系统——CAN总线的应用 目前地铁采用了自动化的技术来实现全方位的控制,地铁综合控制系统包括ATC(列车自动控制)、SCADA(电力监控系统)、BAS(环境监控系统)、FAS(火灾报警系统)、PSD(屏蔽门/安全门系统)等,这些系统在全线形成网络,由控制中心统一分级控制。 其中,地铁屏蔽门系统PSD是基于CAN总线实现的,如图1所示该系统包括以下子单元: 图 1 地铁屏蔽门控制系统示意图
[测试测量]
地铁屏蔽门<font color='red'>CAN总线</font>故障排查流程
一种CAN总线的电气火灾监控系统设计与应用
  1引言   国家标准《建筑电气火灾预防要求和检测方法》有关条文中明确要求“应在电源进线端设置自动切断电源或报警的剩余电流动作保护器”。在《剩余电流动作保护装置安装和运行》有关条文中也同样明确要求“必须安装剩余电流保护装置的设备和场所”。其中就末端保护和线路保护做出了具体规则,另外,在4.6条款里,同样明确在某些场所“应安装报警式剩余电流保护装置”的具体规定。这些都是强制性的规定。   在国家标准《高层民用建筑设计防火规范》和《建筑设计防火规范》里,对是否安装电气火灾监控系统是以“宜”安装来表示的。所谓“宜”安装,按着规范里用词说明指出:表示允许也稍有选择。也就是说可以安装,也可以不安装。   在各类建筑及其它领域中广泛应
[嵌入式]
基于CAN总线的镍氢电池管理系统
  1 前言   蓄电池剩余容量的准确测量在电动汽车的发展中一直是一个非常关键的问题。有效的电池管理系统有利于电池的寿命提高。所以对蓄电池SOC的准确估计成为电动车电池能量管理系统的中心问题。如果能够正确估计蓄电池的SOC,就能合理利用蓄电池提供的电能,延长电池组的使用寿命。   方案采用总线式方式组网,应用现场总线完成各个节点之间的数据交换。在分布式方案中,多能源控制器为主控ECU,它通过现场总线和多个下位ECU通信。工作过程中,每个控制器的通信子模块以定时器或者中断的方式在后台运行,完成数据的收发工作,节省主流程资源开支。如图1所示。   电池的SOC值是电池控制器通过CAN总线发送给多能源控制器,而整车的工作
[电源管理]
基于<font color='red'>CAN总线</font>的镍氢电池管理系统
汽车电子产业迎接CAN总线技术应用时代
“汽车电子业最大的热点就是网络化。”一位业内人士如此描述汽车网络的应用前景。而控制器局域网(CAN)拥有的多主节点、开放式架构,以及错误检测及自恢复能力等优势,成为汽车网络应用的热门。从以下一组数字中也印证了这一趋势,02年数据,全球市场上大约有一亿只CAN收发器,平均一辆车上有12个到15个低速CAN收发器,4到5个高速CAN收发器。 一些汽车专家认为,就像在20世纪70年代引入集成电路、80年代引入微处理器一样,近10年来数据总线技术的引入也将是汽车电子技术发展的一个里程碑。 适应实时诊断与安全性需求 CAN总线成必备装置 CAN总线网络技术的应用可以说是躬逢其盛。德尔福电子与安全部中国工程经
[汽车电子]
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
随便看看
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved