电池供电型便携式无线设备的电源架构向“绿色”迈进

发布者:温暖的拥抱最新更新时间:2017-09-11 来源: eefocus关键字:便携式  电池  电源 手机看文章 扫描二维码
随时随地手机看文章

一个由电池供电的便携式无线设备存在着很多系统设计师必须克服的关键问题。最重要的问题之一是如何让热量从设备中散出,因为这类设备通常没有用于冷却目的的风扇。结果,可能用于这类设备中的电源转换和管理IC必须是高热效率的,因为电源转换效率不佳的主要副产品就是热量。

这种热量是在能量输送过程中由稳压器内损失的功率所产生。此外,在很多便携式设备内部,用于冷却目的的空气流动有限,而且散热器由于自身尺寸和设备内可用空间而受到限制,因此器件密集排列的印刷电路板必须处理这种热量。不过,这种热量转化成产品内部工作(环境)温度的上升,这可能对长期可靠性产生有害影响。

一个DC/DC转换器的转换效率可以用输出功率除以输入功率来计算,或者换一种说法,是负载功率除以输入功率。系统设计师必须根据电源转换过程产生的热量仔细考虑应该使用的稳压器类型。因此,很多电池供电型便携式无线设备制造商的常见做法是,采用开关稳压器而不是更简单的线性低压差稳压器,因为开关稳压器的工作效率更高。

电源架构趋势

图1是一个典型的电池供电型便携式无线设备的电源转换和管理架构。不是所有产品都含有一个集成的电池充电器,因为有些制造商更喜欢将电池充电器放在一个附属充电座中。这些充电座允许同时进行该设备与主计算机的通信,并提供必需给电池再充电的充电电流。另外,有些制造商不想增加成本和设计时间以将电池充电器设计和制造在产品中,而是简单地选择用单节或多节标准圆柱形AA或AAA型电池为产品供电,而不管电池的化学组成类型。




图1 一个典型的电池供电型便携式无线设备的电源架构



在几乎任何类型的便携式无线设备中都需要几个不同的电压轨,这种情况很常见,除了某些类型的电池,这些设备可能还有多个输入电源。这些电压轨一般包括一个3.0V或3.3V的主系统总线、一个1.2V的微处理器或DSP内核电压、用于I/O的1.8V、用于射频电源的2.8V、用于USBOTG支持或为音频电路供电的5V、以及一个为LED阵列供电以实现显示器背光照明的LED驱动器。不过,一个常见的问题仍然存在,那就是如何最佳地管理来自各种不同输入电源的可用功率,以优化最终产品的功能,同时给电池充电(如果电池存在)。解决这个复杂问题所需要的是简单和有效的电源通路控制电路。

电源通路控制是一个自动的负载优先处理电路,在优先向系统负载供电的同时,能自主和无缝地管理如USB端口、交流适配器和电池等多个输入电源之间的电源通路。在传统的电池馈送型充电系统中,用户必须等到有足够的电池充电量和电压值,才能获得系统功率。相反地,电源通路控制允许最终产品在一插电就立即工作,而不管电池的充电状态如何,这常常称为“即时接通”工作。

电源通路控制电路可以用线性和开关拓扑实现。线性电源通路拓扑的好处是易于实施和具成本效益。不过,开关模式电源通路拓扑可提高向系统负载和电池供电的效率。开关模式电源通路拓扑是通过消除在线性电池充电器单元损失的功率做到这一点的,当电池电压低和/或输入功率有限时(例如,靠一个受限的USB端口供电)尤其重要,从而使这种拓扑具有卓越的热特性。第二个突出优点是,当电池电压低时,它能够从一个标准USB端口(约2.3W)抽取高达700mA的电池充电电流。这之所以成为可能,是因为开关拓扑有高于90%的转换效率,而线性拓扑的标称转换效率仅为60%。幸运的是,有很多模拟半导体供应商同时提供独立和高度集成的电源通路控制IC。
由AA或AAA电池供电的设备需要特别考虑

除了锂离子电池,出于便利性、可用性和成本原因,多种便携式无线设备仍然由两节可再充电或不可再充电的AA或AAA型电池(采用镍、碱性或新的圆柱形锂化学材料)供电。不过,正如已经提到的那样,管理进入手持式设备的电源通路是一个日益复杂的任务,因为产品中存在多种电源电压,空间非常有限但需要最佳效率。常见的情况是,这些因素促进了为很多电池供电型设备而开发的高度集成电源管理IC(PMIC)。

不过,当使用一个由两节AA或AAA电池和一个5V AC适配器或一个5VUSB端口供电的便携式无线设备时,最大的障碍之一是为主电源轨提供一个固定3V或3.3V输出,以及提供一个为微处理器或DSP内核电压供电的1.2V输出。当该设备由5V交流适配器或5VUSB端口供电时,仅需要降压型DC/DC转换器。不过,当该设备由电池供电时,常常需要一个降压-升压型DC/DC转换器来为主电源轨提供3V或3.3V电压,同时需要一个降压型DC/DC转换器来为大规模数字处理器内核提供   1.2V电压。这是因为,两节AA(镍或碱性)电池的放电曲线是从3.2V直至   1.8V,不过,用“新”的圆柱形锂AA和AAA电池,这个范围已经向上移动了约0.4V,因此需要一个降压-升压型稳压器以更高效率在整个电池放电范围内调节3.0V或3.3V。此外,常常需要第二个降压通道来为标称值为1.8V的存储器供电。
由电池供电的无线便携式设备也需要绿色电源

过去一年中“绿色环保”概念大量出现在新闻中,2009年我们将会看到更多这方面的报道。结果,很多供应商或电源管理和转换IC在跨宽负载范围提高电源转换效率方面取得了很大进步。

此外,人们普遍认为,不管产品是靠插到墙上的电源插座还是靠电池供电工作,都需要节能。这是因为,随着一个国家人口的增加,对能量的需求也在增加,人们需要能量为家居的加热/冷却系统、照明和家用电器供电。不仅建造新的发电设施耗费大量资金,而且电能产生后传送到用户处也需要大量的金钱。据观察,将大多数家用电器目前的能耗降低15%~20%,比建设新的发电设施更具成本效益。

就由电池供电的便携式无线产品而言,类似的概念也适用,不过,在使用多节AA或AAA型电池的情况下,对这些含有害化学材料的电池处置给我们的环境造成了负面影响。显然,为延长这些电池在最终产品中的使用寿命所能做的任何事情都将最大限度减小更换电池的频度,因此可以减少需要回收的有害污染物。

与建造新的发电设施或有害化学材料回收设施有关的高成本导致的结果是,很多国家已经采取了“绿色政策”,这些国家以此鼓励制造商在最终产品中采用节能技术。因此,就一个用在任何类型节能设备中的电源管理和转换IC而言,任何内部使用的DC/DC转换器都必须有两个主要的特性。首先,它们必须在宽负载电流范围内拥有非常高的转换效率。其次,它们在备用和停机模式时必须有非常低的静态电流。结果,很多由电池供电的便携式产品正在纳入具有这两个关键特性的电源管理和转换产品。
新的绿色电源转换产品

LTC3101是一个多功能、紧凑型电源管理解决方案系列中最新的PMIC,该系列解决方案用于电池供电和电池备份应用。它集成了一个低损耗电源通路(PowerPath)控制器、3个高效率同步开关稳压器(1个降压-升压和两个降压)、1个电流限制为200mA的VMAX输出(跟踪电压较高的输入电源)、1个受保护的100mA热插拔(HotSwap)输出、按钮开/关控制、一个可编程处理器复位发生器和一个始终保持接通的LDO,所有这些都在一个紧凑型、扁平4mm×4mmQFN-24封装中。

LTC3101具有1.8~5.5V的宽输入工作电压范围,与2或3节采用镍、锂或碱性化学材料的AA或AAA型电池、标准单节锂离子/聚合物棱柱形电池以及USB或5V交流适配器输入电源兼容(见图3)。此外,该器件的低损耗电源通路控制无缝和自动地管理上述多个输入电源之间的电源通路。“保持运作”的VMAX和LDO输出为关键功能或附加的外部稳压器供电。内部排序和独立的使能引脚提供了灵活的加电选项。




图2 LTC3101的效率曲线





图3 LTC3101原理图



LTC3101的降压-升压型稳压器在输入电压高于3V时可以连续提供高达800mA的电流,非常适用于在1.8~ 5.5V的整个输入电压范围内高效率地调节3.0V或3.3V输出。LTC3101的两个降压型稳压器以100%占空比工作,每个都能提供350mA的输出电流,具有低至0.6V的可调输出电压。LTC3101的内部低RDS(ON) 开关实现了高达95%的降压-升压效率和高达93%的降压型稳压器效率,从而最大限度地延长电池运行时间(见图 2)。

诸如手持式仪表和医疗诊断设备等便携式无线仪表,由于需要执行大量数据处理任务而由3或4节AA电池供电的情形并非罕见。同步降压-升压型转换器LTC3534就是为此而设计的,该器件具有2.4~7V的扩展输入电压范围,可向固定稳压输出提供高达500mA的输出电流。它的输入可以高于、等于或低于输出。LTC3534采用的拓扑在所有工作模式时都提供连续输送模式,从而使其非常适用于3或4节碱性电池应用。

例如,考虑一个输入电压范围为 3.6~6.4V以提供一个固定5V输出的4节碱性(AA或AAA)电池应用(见图4)。在很多情况下,当与更加传统的SEPIC方法比较时,运用LTC3534可以使电池运行时间延长25%。LTC3534的1MHz恒定开关频率在最大限度地减小外部组件尺寸的同时提供低输出噪声。纤巧外部组件结合3mm×5mm DFN(或SSOP-16)封装提供了一个纤巧的解决方案占板面积,非常适用于很多手持式设备。




图4 LTC3534 原理图



LTC3534含有两个N沟道以及两个P沟道MOSFET(分别为215mΩ/275Ωm和260mΩ),提供高达94%的效率。突发模式工作仅需要25μA的静态电流,而停机电流低于1μA,以进一步延长电池运行时间。如果应用是噪声敏感的,那么还可以配置PWM引脚以提供强制连续工作,从而降低噪声和潜在的射频干扰。其他特点包括软启动、电流限制、热停机和输出断接。


关键字:便携式  电池  电源 引用地址:电池供电型便携式无线设备的电源架构向“绿色”迈进

上一篇:消费电子射频(RF4CE)协议标准介绍
下一篇:CPF在低功耗设计验证中的应用

推荐阅读最新更新时间:2024-05-03 01:39

轨至轨运放具有高精度和高电源效率
加利福尼亚州米尔皮塔斯 (MILPITAS, CA) – 2017 年 2 月 28 日 – 凌力尔特公司 (Linear Technology Corporation) 推出单 / 双 / 四通道运算放大器 LTC6258/59/60 和 LTC6261/62/63,丰富了高电源效率、低噪声、高精度运算放大器产品线。这些器件隶属于一个 1.3MHz 增益带宽积 (在 20µA 电源电流) 至 720MHz 增益带宽积 (在 3.3mA 电源电流) 高效率运放系列。该系列的这些最新成员采用 1.8V 至 5.25V 电源工作,具有轨至轨输入和输出,并包括具有停机模式的版本,因而进一步降低了待用期间的功耗。输入失调电压仅为 400µ
[模拟电子]
轨至轨运放具有高精度和高<font color='red'>电源</font>效率
移动设备电池续航如何突破
美国科技博客ReadWrite近日撰文,对移动设备使用的电池技术现状进行了剖析,认为倘若不尽快在这一领域实现突破,可能美国科技博客ReadWrite近日撰文,对移动设备使用的电池技术现状进行了剖析,认为倘若不尽快在这一领域实现突破,可能会阻碍移动行业的未来发展。    以下为文章全文:   未来的某一天,我的身体、口袋和房子里都会布满各种各样的智能设备,只需要通过语音、手势或手指的点击,便可控制我生活中的几乎所有事情。这种体验实在是太酷了——但美中不足的是,我无法摆脱杂乱电线的束缚。   这些大煞风景的电线,令这番本应幸福满满的场景瞬间变得索然无味:倘若我忘记给手机或可穿戴设备充电,或者忘记携带备用电池和充电线缆,便会瞬间被打
[电源管理]
移动设备<font color='red'>电池</font>续航如何突破
电池管理电子设备如何增强电池的安全性
对于锂离子电池包制造商来说,针对电池供电系统构建安全且可靠的产品是至关重要的。电池包中的电池管理 电路 可以监控锂离子电池的运行状态,包括了电池阻抗、温度、单元 电压 、充电和放电 电流 以及充电状态等,以为系统提供详细的剩余运转时间和电池健康状况信息,确保系统作出正确的决策。此外,为了改进电池的安全性能,即使只有一种故障发生,例如过电流、短路、单元和电池包的电压过高、温度过高等,系统也会关闭两个和锂离子电池 串联 的背靠背(back-to-back)保护 MOSFET ,将电池单元断开。基于阻抗跟踪技术的电池管理单元(BMU)会在整个电池使用周期内监控单元阻抗和电压失衡,并有可能检测电池的微小短路(micro
[电源管理]
<font color='red'>电池</font>管理电子设备如何增强<font color='red'>电池</font>的安全性
直流电源
  维持电路中形成稳恒电流的装置。如干电池、蓄电池、直流发电机等。   直流电源有正、负两个电极,正极的电位高,负极的电位低,当两个电极与电路连通后,能够使电路两端之间维持恒定的电位差,从而在外电路中形成由正极到负极的电流。   单靠水位高低之差不能维持稳恒的水流,而借助于水泵持续地把水由低处送往高处就能维持一定的水位差而形成稳恒的水流。与此类似,单靠电荷所产生的静电场不能维持稳恒的电流,而借助于直流电源,就可以利用非静电作用(简称为“非静电力”)使正电荷由电位较低的负极处经电源内部返回到电位较高的正极处,以维持两个电极之间的电位差,从而形成稳恒的电流。因此,直流电源是一种能量转换装置,它把其他形式的能量转换为电能供给电路,以维持
[电源管理]
浅论蓄电池工作原理及使用误区
蓄电池是电池中的一种,它的作用是能把有限的电能储存起来,在合适的地方使用。它的工作原理就是把化学能转化为电能。   它用填满海绵状铅的铅板作负极,填满二氧化铅的铅板作正极,并用22~28%的稀硫酸作电解质。在充电时,电能转化为化学能,放电时化学能又转化为电能。电池在放电时,金属铅是负极,发生氧化反应,被氧化为硫酸铅;二氧化铅是正极,发生还原反应,被还原为硫酸铅。电池在用直流电充电时,两极分别生成铅和二氧化铅。移去电源后,它又恢复到放电前的状态,组成化学电池。铅蓄电池是能反复充电、放电的电池,叫做二次电池。它的电压是2V,通常把三个铅蓄电池串联起来使用,电压是6V。汽车上用的是6个铅蓄电池串联成12V的电池组。铅蓄电池在使
[电源管理]
浅论蓄<font color='red'>电池</font>工作原理及使用误区
46毫米直径/提高能量密度 Rimac开发新电池模块
日前,网通社从海外媒体carscoops获悉,Rimac正在开发一种新的电池模块,该模块将使用更大的 46毫米直径圆柱形电池,以提高其未来电池组的能量密度。 Dilov表示虽然Rimac正在寻求改进其电池组的硬件,但为其新组件部门的增长目标是到2023年供应不少于40,000个电池组,到2028年供应不少于200,000个电池组。 Rimac Technology研究和先进工程负责人Wasim Sarwar Dilov透露,这家克罗地亚公司正在研究构成汽车车身一部分的结构电池组;Rimac还希望提高“电池到电池组的转换效率”,这意味着它的目标是让电池组占电池组总质量的75%。目前,保时捷Taycan的电
[汽车电子]
46毫米直径/提高能量密度 Rimac开发新<font color='red'>电池</font>模块
典型低功耗便携式系统DC-DC升压调节器设计
  便携式电子器件(如智能手机、GPS导航系统和平板电脑)的电源可以来自低压太阳能电池板、电池或AC-DC电源。电池供电系统通常将电池串联叠置以实现更高的电压,但此技术由于空间不足未必总是可行。开关转换器使用电感磁场来交替存储电能,并以不同电压释放至负载。因为损耗很低,所以是个不错的高效选择。连接至转换器输出端的电容可降低输出电压纹波。本文所讨论的升压, 转换器提供较高电压;而前一篇文章1所讨论的降压转换器提供较低输出电压。内置FET作为开关的开关转换器称为开关调节器,2 需要外部FET的开关转换器则称为开关控制器.3   图1显示采用两节串联的AA电池供电的典型低功耗系统。电可用输出范围约为1.8 V至3.4 V,而IC工作
[电源管理]
典型低功耗<font color='red'>便携式</font>系统DC-DC升压调节器设计
最高400万元奖励 天津支持液流电池等产业重点领域制造业企业发展
  近日,天津市工业和信息化局、市委网信办市发展改革委、市科技局、市财政局发布《2024年第一批天津市制造业高质量发展专项资金项目申报指南》。在附件3中提到:   支持新能源发展。支持新能源产业重点领域制造业企业,主要包括锂电池(或钠离子电池、 液流电池 等)及关键材料的生产、回收利用,风电整机及关键部件,太阳能光伏,氢燃料电池及制氢装备,储能系统产品及装备等企业。根据申报企业基础能力建设和系统集成效果进行综合评价,对得分80分(含)以上的,给予最高400万元奖励;对得分80分以下且60分(含)以上的,给予最高200万元奖励。   以下为原文 2024年第一批天津市制造业高质量发展专项支持新能源发展项
[新能源]
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved