多种工业触摸屏的原理及特性解析

发布者:RadiantGaze最新更新时间:2017-09-19 来源: elecfans关键字:工业控制  触摸屏 手机看文章 扫描二维码
随时随地手机看文章

按照触摸屏的工作原理和传输信息的介质,我们把触摸屏分为四种,它们分别为电阻式、电容感应式、红外线式以及表面声波式。每一类触摸屏都有其各自的优缺点,要了解那种触摸屏适用于那种场合,关键就在于要懂得每一类触摸屏技术的工作原理和特点。本文对上述的各种类型的触摸屏进行简要介绍。

触摸屏原理

为了操作上的方便,人们用触摸屏来代替鼠标或键盘。工作时,我们必须首先用手指或其它物体触摸安装在显示器前端的触摸屏,然后系统根据手指触摸的图标或菜单位置来定位选择信息输入。触摸屏由触摸检测部件和触摸屏控制器组成;触摸检测部件安装在显示器屏幕前面,用于检测用户触摸位置,接受后送触摸屏控制器;而触摸屏控制器的主要作用是从触摸点检测装置上接收触摸信息,并将它转换成触点坐标,再送给CPU,它同时能接收CPU发来的命令并加以执行。

工业触摸屏的主要类型

按照触摸屏的工作原理和传输信息的介质,我们把触摸屏分为四种,它们分别为电阻式、电容感应式、红外线式以及表面声波式。每一类触摸屏都有其各自的优缺点,要了解那种触摸屏适用于那种场合,关键就在于要懂得每一类触摸屏技术的工作原理和特点。下面对上述的各种类型的触摸屏进行简要介绍一下:

1、电阻式触摸屏

这种触摸屏利用压力感应进行控制。电阻触摸屏的主要部分是一块与显示器表面非常配合的电阻薄膜屏,这是一种多层的复合薄膜,它以一层玻璃或硬塑料平板作为基层,表面涂有一层透明氧化金属(透明的导电电阻)导电层,上面再盖有一层外表面硬化处理、光滑防擦的塑料层、它的内表面也涂有一层涂层、在他们之间有许多细小的(小于1/1000英寸)的透明隔离点把两层导电层隔开绝缘。 当手指触摸屏幕时,两层导电层在触摸点位置就有了接触,电阻发生变化,在X和Y两个方向上产生信号,然后送触摸屏控制器。控制器侦测到这一接触并计算出(X,Y)的位置,再根据模拟鼠标的方式运作。这就是电阻技术触摸屏的最基本的原理。 电阻类触摸屏的关键在于材料科技,常用的透明导电涂层材料有:

A、ITO,氧化铟,弱导电体,特性是当厚度降到1800个埃(埃=10-10米)以下时会突然变得透明,透光率为80%,再薄下去透光率反而下降,到300埃厚度时又上升到80%。ITO是所有电阻技术触摸屏及电容技术触摸屏都用到的主要材料,实际上电阻和电容技术触摸屏的工作面就是ITO涂层。

B、镍金涂层,五线电阻触摸屏的外层导电层使用的是延展性好的镍金涂层材料,外导电层由于频繁触摸,使用延展性好的镍金材料目的是为了延长使用寿命,但是工艺成本较为高昂。镍金导电层虽然延展性好,但是只能作透明导体,不适合作为电阻触摸屏的工作面,因为它导电率高,而且金属不易做到厚度非常均匀,不宜作电压分布层,只能作为探层。

1.1四线电阻屏

四线电阻模拟量技术的两层透明金属层工作时每层均增加5V恒定电压:一个竖直方向,一个水平方向。总共需四根电缆。 特点:高解析度,高速传输反应。 表面硬度处理,减少擦伤、刮伤及防化学处理。 具有光面及雾面处理。 一次校正,稳定性高,永不漂移。

1.2五线电阻屏

五线电阻技术触摸屏的基层把两个方向的电压场通过精密电阻网络都加在玻璃的导电工作面上,我们可以简单的理解为两个方向的电压场分时工作加在同一工作面上,而外层镍金导电层只仅仅用来当作纯导体,有触摸后分时检测内层ITO接触点X轴和Y轴电压值的方法测得触摸点的位置。五线电阻触摸屏内层ITO需四条引线,外层只作导体仅仅一条,触摸屏得引出线共有5条。 特点:解析度高,高速传输反应。 表面硬度高,减少擦伤、刮伤及防化学处理。 同点接触3000万次尚可使用。 导电玻璃为基材的介质。 一次校正,稳定性高,永不漂移。 五线电阻触摸屏有高价位和对环境要求高的缺点

1. 3电阻屏的局限

不管是四线电阻触摸屏还是五线电阻触摸屏,它们都是一种对外界完全隔离的工作环境,不怕灰尘和水汽,它可以用任何物体来触摸,可以用来写字画画,比较适合工业控制领域及办公室内有限人的使用。电阻触摸屏共同的缺点是因为复合薄膜的外层采用塑胶材料,不知道的人太用力或使用锐器触摸可能划伤整个触摸屏而导致报废。不过,在限度之内,划伤只会伤及外导电层,外导电层的划伤对于五线电阻触摸屏来说没有关系,而对四线电阻触摸屏来说是致命的。

2、电容式触摸屏


2.1电容技术触摸屏

是利用人体的电流感应进行工作的。电容式触摸屏是是一块四层复合玻璃屏,玻璃屏的内表面和夹层各涂有一层ITO,最外层是一薄层矽土玻璃保护层,夹层ITO涂层作为工作面,四个角上引出四个电极,内层ITO为屏蔽层以保证良好的工作环境。 当手指触摸在金属层上时,由于人体电场,用户和触摸屏表面形成以一个耦合电容,对于高频电流来说,电容是直接导体,于是手指从接触点吸走一个很小的电流。这个电流分从触摸屏的四角上的电极中流出,并且流经这四个电极的电流与手指到四角的距离成正比,控制器通过对这四个电流比例的精确计算,得出触摸点的位置。

2.2电容触摸屏的缺陷

电容触摸屏的透光率和清晰度优于四线电阻屏,当然还不能和表面声波屏和五线电阻屏相比。电容屏反光严重,而且,电容技术的四层复合触摸屏对各波长光的透光率不均匀,存在色彩失真的问题,由于光线在各层间的反射,还造成图像字符的模糊。

电容屏在原理上把人体当作一个电容器元件的一个电极使用,当有导体靠近与夹层ITO工作面之间耦合出足够量容值的电容时,流走的电流就足够引起电容屏的误动作。我们知道,电容值虽然与极间距离成反比,却与相对面积成正比,并且还与介质的的绝缘系数有关。因此,当较大面积的手掌或手持的导体物靠近电容屏而不是触摸时就能引起电容屏的误动作,在潮湿的天气,这种情况尤为严重,手扶住显示器、手掌靠近显示器7厘米以内或身体靠近显示器15厘米以内就能引起电容屏的误动作。 电容屏的另一个缺点用戴手套的手或手持不导电的物体触摸时没有反应,这是因为增加了更为绝缘的介质。

电容屏更主要的缺点是漂移:当环境温度、湿度改变时,环境电场发生改变时,都会引起电容屏的漂移,造成不准确。例如:开机后显示器温度上升会造成漂移:用户触摸屏幕的同时另一只手或身体一侧靠近显示器会漂移;电容触摸屏附近较大的物体搬移后回漂移,你触摸时如果有人围过来观看也会引起漂移;电容屏的漂移原因属于技术上的先天不足,环境电势面(包括用户的身体)虽然与电容触摸屏离得较远,却比手指头面积大的多,他们直接影响了触摸位置的测定。此外,理论上许多应该线性的关系实际上却是非线性,如:体重不同或者手指湿润程度不同的人吸走的总电流量是不同的,而总电流量的变化和四个分电流量的变化是非线性的关系,电容触摸屏采用的这种四个角的自定义极坐标系还没有坐标上的原点,漂移后控制器不能察觉和恢复,而且,4个A/D完成后,由四个分流量的值到触摸点在直角坐标系上的X、Y坐标值的计算过程复杂。由于没有原点,电容屏的漂移是累积的,在工作现场也经常需要校准。 电容触摸屏最外面的矽土保护玻璃防刮擦性很好,但是怕指甲或硬物的敲击,敲出一个小洞就会伤及夹层ITO,不管是伤及夹层ITO还是安装运输过程中伤及内表面ITO层,电容屏就不能正常工作了。

3、红外线触摸屏

红外触摸屏是利用X、Y方向上密布的红外线矩阵来检测并定位用户的触摸。红外触摸屏在显示器的前面安装一个电路板外框,电路板在屏幕四边排布红外发射管和红外接收管,一一对应形成横竖交叉的红外线矩阵。用户在触摸屏幕时,手指就会挡住经过该位置的横竖两条红外线,因而可以判断出触摸点在屏幕的位置。任何触摸物体都可改变触点上的红外线而实现触摸屏操作。

早期观念上,红外触摸屏存在分辨率低、触摸方式受限制和易受环境干扰而误动作等技术上的局限,因而一度淡出过市场。此后第二代红外屏部分解决了抗光干扰的问题,第三代和第四代在提升分辨率和稳定性能上亦有所改进,但都没有在关键指标或综合性能上有质的飞跃。但是,了解触摸屏技术的人都知道,红外触摸屏不受电流、电压和静电干扰,适宜恶劣的环境条件,红外线技术是触摸屏产品最终的发展趋势。采用声学和其它材料学技术的触屏都有其难以逾越的屏障,如单一传感器的受损、老化,触摸界面怕受污染、破坏性使用,维护繁杂等等问题。红外线触摸屏只要真正实现了高稳定性能和高分辨率,必将替代其它技术产品而成为触摸屏市场主流。

过去的红外触摸屏的分辨率由框架中的红外对管数目决定,因此分辨率较低,市场上主要国内产品为32x32、40X32,另外还有说红外屏对光照环境因素比较敏感,在光照变化较大时会误判甚至死机。这些正是国外非红外触摸屏的国内代理商销售宣传的红外屏的弱点。而最新的技术第五代红外屏的分辨率取决于红外对管数目、扫描频率以及差值算法,分辨率已经达到了1000X720,至于说红外屏在光照条件下不稳定,从第二代红外触摸屏开始,就已经较好的克服了抗光干扰这个弱点。 第五代红外线触摸屏是全新一代的智能技术产品,它实现了1000*720高分辨率、多层次自调节和自恢复的硬件适应能力和高度智能化的判别识别,可长时间在各种恶劣环境下任意使用。并且可针对用户定制扩充功能,如网络控制、声感应、人体接近感应、用户软件加密保护、红外数据传输等。 原来媒体宣传的红外触摸屏另外一个主要缺点是抗暴性差,其实红外屏完全可以选用任何客户认为满意的防暴玻璃而不会增加太多的成本和影响使用性能,这是其他的触摸屏所无法效仿的。

4、表面声波触摸屏

4.1 表面声波

表面声波,超声波的一种,在介质(例如玻璃或金属等刚性材料)表面浅层传播的机械能量波。通过楔形三角基座(根据表面波的波长严格设计),可以做到定向、小角度的表面声波能量发射。表面声波性能稳定、易于分析,并且在横波传递过程中具有非常尖锐的频率特性,近年来在无损探伤、造影和退波器方向上应用发展很快,表面声波相关的理论研究、半导体材料、声导材料、检测技术等技术都已经相当成熟。 表面声波触摸屏的触摸屏部分可以是一块平面、球面或是柱面的玻璃平板,安装在CRT、LED、LCD或是等离子显示器屏幕的前面。玻璃屏的左上角和右下角各固定了竖直和水平方向的超声波发射换能器,右上角则固定了两个相应的超声波接收换能器。玻璃屏的四个周边则刻有45°角由疏到密间隔非常精密的反射条纹。

4.2 表面声波触摸屏工作原理

以右下角的X-轴发射换能器为例: 发射换能器把控制器通过触摸屏电缆送来的电信号转化为声波能量向左方表面传递,然后由玻璃板下边的一组精密反射条纹把声波能量反射成向上的均匀面传递,声波能量经过屏体表面,再由上边的反射条纹聚成向右的线传播给X-轴的接收换能器,接收换能器将返回的表面声波能量变为电信号。 当发射换能器发射一个窄脉冲后,声波能量历经不同途径到达接收换能器,走最右边的最早到达,走最左边的最晚到达,早到达的和晚到达的这些声波能量叠加成一个较宽的波形信号,不难看出,接收信号集合了所有在X轴方向历经长短不同路径回归的声波能量,它们在Y轴走过的路程是相同的,但在X轴上,最远的比最近的多走了两倍X轴最大距离。因此这个波形信号的时间轴反映各原始波形叠加前的位置,也就是X轴坐标。 发射信号与接收信号波形 在没有触摸的时候,接收信号的波形与参照波形完全一样。当手指或其它能够吸收或阻挡声波能量的物体触摸屏幕时,X轴途经手指部位向上走的声波能量被部分吸收,反应在接收波形上即某一时刻位置上波形有一个衰减缺口。 接收波形对应手指挡住部位信号衰减了一个缺口,计算缺口位置即得触摸坐标 控制器分析到接收信号的衰减并由缺口的位置判定X坐标。之后Y轴同样的过程判定出触摸点的Y坐标。除了一般触摸屏都能响应的X、Y坐标外,表面声波触摸屏还响应第三轴Z轴坐标,也就是能感知用户触摸压力大小值。其原理是由接收信号衰减处的衰减量计算得到。三轴一旦确定,控制器就把它们传给主机。

4.3表面声波触摸屏特点

清晰度较高,透光率好。高度耐久,抗刮伤性良好(相对于电阻、电容等有表面度膜)。反应灵敏。不受温度、湿度等环境因素影响,分辨率高,寿命长(维护良好情况下5000万次);透光率高(92%),能保持清晰透亮的图像质量;没有漂移,只需安装时一次校正;有第三轴(即压力轴)响应,目前在公共场所使用较多。 表面声波屏需要经常维护,因为灰尘,油污甚至饮料的液体沾污在屏的表面,都会阻塞触摸屏表面的导波槽,使波不能正常发射,或使波形改变而控制器无法正常识别,从而影响触摸屏的正常使用,用户需严格注意环境卫生。必须经常擦抹屏的表面以保持屏面的光洁,并定期作一次全面彻底擦除。

声波屏的三个角分别粘贴着X,Y方向的发射和接收声波的换能器(换能器:由特殊陶瓷材料制成的,分为发射换能器和接收换能器。是把控制器通过触摸屏电缆送来的电信号转化为声波能和由反射条纹汇聚成的表面声波能变为电信号。),四个边刻着反射表面超声波的反射条纹。当手指或软性物体触摸屏幕,部分声波能量被吸收,于是改变了接收信号,经过控制器的处理得到触摸的X,Y坐标。


关键字:工业控制  触摸屏 引用地址:多种工业触摸屏的原理及特性解析

上一篇:转矩补偿对单转子压缩机低速运转的影响
下一篇:多看看多学学 六个方法帮助你初学PLC

推荐阅读最新更新时间:2024-05-03 01:41

S5PV210的电阻触摸屏&ADC控制器
一、ADC与触摸屏控制器结构框图 1、S5PV210一共支持10路模拟输入,分别为AIN0-AIN9.其中AIN0和AIN1是只做模拟输入的,AIN2-AIN9分别可以支持2个电阻式触摸屏,所以这个就是上个博客中电阻式触摸屏的 第一种接口,将电阻触摸板传感器直接与SoC控制器相连。所以4个模拟输入引脚负责一个电阻式触摸屏。 2、从上面可以看出来,整个控制器由多个部分组成。AD转换和触摸屏控制部分有2个附属单元。其中一个是反向控制AINn引脚的逻辑(图中的箭头),主要作用是在触摸屏获取坐标的过程中分时给xy方向供电和测量;第二个是中断产生部件,对于AIN1和AIN0来说,当AD转换完成之后就会通过INT_ADC0和INT_A
[单片机]
S5PV210的电阻<font color='red'>触摸屏</font>&ADC控制器
基于ARM9的简易数码相框
尽管数码相框已经出现几年了,但它对很多人来说还是个新概念。数码相框通过液晶的屏幕来显示数字相片,可以通过读卡器接口从SD 卡获取数字相片信息,并可设置循环显示方式,比普通相框更灵活多变,也给日益增多的数码相片提供了一个新的展示空间。本文介绍一款基于mini2440 型ARM9 开发系统做的嵌入式简易数码相框。其硬件包括键盘,IO 口,显示器软件包括LINUX 操作系统都是mini2440 的资源,这里不再详述。 一、主要功能 开机后,显示开机图片。点击触摸屏上的图标,可以进入设置界面或点播界面。在设置界面可完成背景音乐的音量调节和设置播放幻灯片时的切换时间。点击播放界面,进入播放USB 中的图片。 二、开发环境及硬件电路
[单片机]
宏基选用赛普拉斯TrueTouch触摸屏解决方案
2011年3月31日,北京讯,赛普拉斯半导体公司日前宣布,宏基(Acer)公司的Liquid MT智能手机的多点触摸屏已选用赛普拉斯的TrueTouch™触摸屏解决方案。灵活的TrueTouch解决方案基于PSoC®可编程片上系统架构,为这一新款手机提供了最佳相应速度和精度。宏基在其最近发布的ICONIA平板电脑上也采用了TrueTouch控制器。 灵活的TrueTouch解决方案可以使客户快速开发先进的解决方案,而无需购买交钥匙模块。他们可以从自己的供应商处选择触摸传感器(玻璃或薄膜)和LCD,且可以开发出从平面到曲面的各种厚度的创新机械设计。此外,TrueTouch器件还传承了赛普拉斯获专利的电容式感应技术,具有传奇
[手机便携]
基于PLC和触摸屏的交流变频调速系统设计
引言 可编程逻辑控制器(PLC)以其编程简单方便、控制稳定可靠、功能强大等优点通常作为控制器广泛应用于现代工业控制领域。触摸屏作为人机交互界面在一定程度上减少PLC的外部I/O点的使用以及减轻系统外部按钮开关的连线复杂程度,同时也提高了运行维护的方便性。随着工业现场对控制设备小型化、易操作化、智能化的要求的不断提高,基于PLC和触摸屏的交流变频调速系统的应用前景将非常广阔。本文采用三菱PLC(Fx2N-64MR)、海泰克触摸屏(PWS6AOOT)、伦茨变频器和外部按钮实现两台三相异步电机的交流变频调速实验系统设计。实际运行结果表明,该系统运行稳定可靠,控制性能良好。 1 控制系统要求 本套系统要求能够实现两台三相异步电动机的如下状
[电源管理]
基于PLC和<font color='red'>触摸屏</font>的交流变频调速系统设计
基于Internet的触摸屏数据库远程监控系统
引言     网络通信技术已经改变了人们的生活,同时也正在改变工业自动化的方方面面。因此,中国 电器 工业协会通用低压 电器 分会在《低压电器新产品发展总体思路》中明确提出:“全面实现低压电器主要产品网络化、智能化、可通信化。要求我国第3代低压电器主要产品、第4代低压电器,全部实现网络化、智能化、可通信,能与多种 现场总线 连接,也可直接与工业以太网连接。”鉴于此,近年来,基于 现场总线 、以太网和直联网(Internel)技术的可编程控制器(Programmable Logic Condoner, PLC )、触摸屏(Human Machlne Interface,HMI)、变额器,智能开戈等各类智能低压电器得到了民足发展,在智
[嵌入式]
工业控制中无源信号和有源信号的应用分析
有源信号和无源信号是相对于电流信号而言的。若传感器设备有独立的工作电源,那传感器传出的电流信号就是有源信号;例如四线制的电磁流量计,单独供电AC220V,然后输出DC4-20ma电流信号。若设备本身没有独立工作电源,需要卡件、模件提供回路电源,输出的4-20mA的电流信号为无源信号。有的人说三线制,或者四线制的都是有源信号,两线制的都是无源信号。其实这个也是看情况呢。例如变送器信号通过二次仪表转换传送到DCS卡件,或者PLC模件,也是两线制的,这个对于DCS、PLC、来说是有源信号。 有源信号的采集很简单,首先给传感器设备提供独立的电源,如AC220V、DC24V等。接通电源设备运行正常后,就可以在转换表头或者二次表中的信号输
[嵌入式]
<font color='red'>工业控制</font>中无源信号和有源信号的应用分析
迈向工业4.0,企业转型的八个成功策略
全球企业都在谈物联网、工业4.0的同时,全新“体验时代”也正式来临。国际调研机构麦肯锡稍早分享了有关现今产业的调查结果,并以中国产业为例,说明目前中国产业真正走向自动化的不到 30%,麦肯锡管理咨询公司资深营运专家侯文皓分析了有关现今产业发展现况与智能制造的必要性,同时提供相对应的八项成功发展策略。 在一场谈企业诊断、策略发展与趋势的论坛中,麦肯锡管理咨询公司资深营运专家侯文皓率先列举多项内部调研数据,强调目前全球企业都在进行一个大规模的数据化转型,中国谈的是中国制造2025,全球企业采用的是德国的工业4.0发展标准,当中的策略上多是着重智能制造、数据化转型等层面。 目前的产业发展速度,发展比较迅速的,包括建筑、钢铁、工程设备、
[嵌入式]
DSP芯片与触摸屏的接口控制
    摘要: 简述了液晶触屏控制产品的工作原理以及用于触摸屏控制的专用芯征ADS7843的工作原理。无线数字扩频通信平台是无线扩频通信的一种开放式平台,在此基础上增加液晶触摸屏控制,可实现文字和图形的编辑无线传送,使该产品用途更加广泛。     关键词: 电阻式触摸屏  DSP  ADS7843 以DSP(数字信号处理)芯征和FPGA(现场可编程逻辑门阵列)为核心的无线数字扩频通信平台是无线扩频通信的一个开放式平台,可用于无线接入、无线图像和音频传送、移动INTERNET、精确区域定位LPS、智能遥控探测等高科技领域。我们在此基础上增加了液晶显示和触摸控制,从而实现文字和图形信息的编辑和无线传送,使该产品用
[应用]
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved